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Chapter 1

Introduction

ABSTRACT

This chapter briefly reviews parts of the classical elegiratimics necessary for
studying a wave propagation propagation in multilayer stures. In the end of
the chapter outline of the thesis is given.



Chapter 1. Introduction 1.1. Maxwell equations and

Optics is the branch of physics that describes the phenom&sariated with
the propagation of light and the interaction of light with ttea According to
the macroscopic, classical Maxwell theory light is an etsoiagnetic field [1, 2].
Microscopic interaction of light with matter, at a more famdental level is stud-
ied in quantum optics [3] that replaces the classical théongspecific purposes.
However, a very broad range of phenomena in the macroscapicl nd many
problems of practical interest can be addressed in the wankeof classical elec-
trodynamics [2].

The field of optics usually deals with the behavior of visjbtérared, and ul-
traviolet light. Results and concepts obtainable for femy ranges can be trans-
ferred to other parts of the spectrum, depending on theadlaimaterial properties
for these frequencies and an technological aspects. Theregfeneral models that
can be used in any frequency range to describe phenomenaexificsdevices are
of particular interest.

Multilayer structures, that are periodical in their optipsoperties in one di-
rection, have been known for a long time and represents rhared century old
subject of investigation [1, 4]. Most common applications efficient Bragg mir-
rors and various filter structures, which are standard dimsany optical systems
[5, 6].

In recent years, artificial structures with spatial perdgliin more than one di-
mension became popular. These structures known as Ph@oystals can create
frequency ranges in which propagation of light is prohiifé, 8, 9]. Ideally, full
3D structures suppress light propagation for all polaitret and directions.

Nevertheless, both fundamental and applied research itilagal optics is
still important due to relevance of multilayer structuresdptical systems. By the
introduction of specific defects in otherwise periodic cgufations one can very
effectively engineer the optical transmission propertizresent research efforts are
directed towards the exploration and utilization as resbnavities in applications
such as lasers, light-emitting diodes, channel drop filtets [6, 7, 4, 10, 11].
Also, knowledge gained from an investigation of multilaptuctures may serve
as a basis for the interpretation and the qualitative (sonesteven quantitative)
understanding of higher dimensional photonic crystalcstmes.

1.1 Maxwell equations and electromagnetic fields

The electromagnetic field is fully described by the Maxwejliations, accompa-
nied by appropriate constitutive relations and boundanditmns [1]. The time
dependent Maxwell equations read

OB
VxE=-—— (1.1)
oD
VxH= 204, (1.2)



Chapter 1. Introduction 1.1. Maxwell equations and

V-D=p, (1.3)
V-B=0, (1.4)

whereE is the electric fieldH the magnetic fieldD the electric displacemenB
the magnetic inductiory the free charge density addhe current density. These
coupled equations describe all macroscopic electrommgpleenomena where the
primary sources of the electromagnetic fields are free esaagd currents.

For wave propagation phenomena considered in optics, nveith@ut free
charges and conduction currents are most relevant. pith 0 andJ = 0, the
Maxwell equations become homogeneous

B
VXE—_E’ (1.5)
oD
VxH=% (1.6)
V.D=0, (1.7)
V-B=0. (1.8)

In this thesis we are dealing with electromagnetic wavespexial type of
solutions of the Maxwell equations. These time-varyingcetamagnetic fields
carry energy and are decoupled from the primary sources. niynadl possible
time-dependencies we are considering time-harmonicisakjtwhere all fields
are of the formA(r,¢) = Re {A(r)e~™'}, for frequencyw. The source free
frequency domain Maxwell equations are

V x E = iwB, (1.9)
V x H = —iwD, (1.10)
V-D=0, (1.11)
V-B=0. (1.12)

To complete the description of the electromagnetic systditianal constitu-
tive relations for the field quantitids, H, D, B must be specified to incorporate the
material properties.

1.1.1 Materials and constitutive relations

A set of constitutive relations is required to complete thaxiell equations. In
general the constitutive relations involve a set of coat parameters and a set of
constitutive operators. The constitutive parameters neagbsimple as constants
or they may be tensors, while the constitutive operators Inedinear and integro-
differential or may involve nonlinear operations on thed]1, 2, 12].

If the constitutive parameters are spatially constant iwighcertain region of
space, the medium is said to be homogeneous within thatmegiben this is

9
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not the case the medium is inhomogeneous. When the con&ifpsirameters
are constant with time the medium is said to be stationaryifaticty are time-
dependent, the medium is non-stationary.

In the case of constitutive operators that involve timev@dives or integrals,
the medium is said to be temporally dispersive, while in cdspace derivatives or
integrals involved, the medium is spatially dispersive. rétiver, the constitutive
parameters may be dependent on other physical properttese aiaterial, such as
temperature, mechanical stress, etc.

In general, the constitutive parameters may be anisotiuicthus have to be
expressed as tensors [1, 2, 12]. We address only isotropieriada, with scalar
constitutive parameters, permeability and permittivity.

In vacuum the constitutive relations are simply

D = ¢E, and B = uoH, (1.13)

whereey = 8.854 - 10~12F/m anduo = 47 - 10-"A/m are the free space permit-
tivity and permeability. These two fundamental physicahstants are related to
the speed of light = 1/, /eopig = 2.998 - 10®m/s. All quantities are expressed in
Sl units, which is the case throughout this thesis, exclytle parts where certain
gquantities are normalized to become nondimensional.

Linear, isotropic and non-dispersive media are describethé constitutive
relations

D =eE+ P =¢ey(l+ xe)E = ¢pe,E (1.14)

B = poH +M = pio(1 + xm)H = poprH (1.15)

whereP = ¢yx.E andM = pgx,,H are the polarization and magnetization vectors
related to the electric and magnetic fields by the dimensgmeklectric and mag-
netic susceptibilities . andy,,,. The constants of proportionality are called relative
electric permittivitye, = 1 4 . and relative magnetic permeability. = 1 + x;,.
They may depend on the position for inhomogeneous materials

In the first three chapters of this thesis, we analyze strestumade from dielec-
tric materials with piecewise constant values of the pdiviiit € in certain regions
of space. They are non-magnetic wjth = 1 and transparent, having negligible
losses in the considered frequency range. This simplifiediemstill covers a large
range of practical situations in multilayer and integrabgtics.

Further, we analyze in the subsequent parts of the thesidstes that incorpo-
rate so called negative index metamaterials. Broadly spgathese are materials
that have both negative permittivity and permeability. Wasider isotropic meta-
materials where permittivity and permeability remain acajuantities with linear
relationship in corresponding constitutive relationsttBosses and dispersion can
be present.

Here, we outline only the general notion on a dispersive gntigs of the
medium, i.e. a medium in which the relations betwézrand E as well asB
andH are given by dynamic rather then instantaneous relatiohsTBe physi-
cal origin of these relations is a time delay occurring bemvthe influence of the

10



Chapter 1. Introduction 1.1. Maxwell equations and

electromagnetic field and the local macroscopic respongiegeahaterials in which
the field exists. As a consequence a time delay exists beteaese and effect,the
fluxesD(t) (B(t)) are superpositions of the effects of fields’) ( H(¢')) at all
earlier times’ < t. These relations are given in the form of convolutions

t

D(r,t) = o <E(r,t)+/

— 00

Xe(r,t — t’)E(r,t’)dt’) , (1.16)

t

B(r,t) = uo <H(r,t) +/

—00

X (Tt — t’)H(r,t’)dt’) ) (1.17)
After Fourier transform, the frequency domain relatiorss ar
D(r,w) = e(r,w)E(r,w) (1.18)

B(r,w) = u(r,w)H(r,w) (1.19)

wheree = €y(1 + xe(r,w)) andp = po(1 + xm(r,w)) are all now frequency
dependent material response functions permittivity amchpability.

The principle of causality is implicit in (1.16),(1.17) e the integrals are
taken up to time only, which represents the notion that the physical fielasrzz
depend on the future state of media. A direct consequencausatity e are the
Kramers-Kronig relations, i.e. the expressions that eethe real and imaginary
parts of the permittivity (permeability) to each other tigh a Hilbert transform
pair [1, 2]. Some details on specific types of frequency d&pa are addressed in
chapter 5 in connection with the description of the negatidex metamaterials.

If absorption losses are present in the media, those can deletbby complex
permittivity and permeability

€ = €re + 1€, AN (b = pire + iflim- (1.20)

Here, imaginary parts arise due to induced polarizatiomsnaagnetizations asso-
ciated with the presence of absorption [2].
Maxwell equations are obviously invariant with the sulositn

E—-HH-—-Ee— —puu— —e (1.21)

This symmetry has an important consequence that can beoquitenient for cer-
tain types of problems.

1.1.2 Interface conditions

The practically most interesting problems involve sitoasi where the material
properties vary in space and have discontinuities. Therasaeciates the discon-
tinuities with appropriate surfaces that separate regionghich the differential

equations can be solved and the fields are well defined. Umégseof the solu-
tions in adjoining regions requires a specification of thegémtial fields on each

11
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Medium 2 : g, , |,

2n 2n 2t 2t

TD,B E, . H

Figure 1.1: Interface con-
Medium 1€, , y, ditions between two me-
dia of different material
properties

side of the adjoining surface [2]. The integral form of thexv@ll equations may
be used to derive interface conditions that are both phijsiceeaningful and ex-
perimentally verifiable [1, 2].

For an interface between two arbitrary media without freeteic charges and
currents these conditions read

Nia x (Ey — Ep) =0, (1.22)
N2 X (He —Hy) =0, (1.23)
Ny - (Dy — Dy) =0, (1.24)
Ny - (By —By) = 0. (1.25)

Herenys is a unit vector normal to the interface. This is the most eaient form
for the waves propagation phenomena considered in thisthes

1.1.3 Poynting theorem and energy conservation

Using Maxwell equations (1.5)-(1.8) and the vector iderfit: (Ex H) = H -V x
E — E -V x H we can derive relation

oD 0B
S E—+H— ) =-JE 1.26
VSt ( o+ at> ’ (1.26)
where
S=E xH. (1.27)

is called the Poynting vector.
For linear, non-dispersive and lossless media an energgitdeni the electro-
magnetic field stored in the material can be defined as

Wz%eE-E—i—%,uH-H. (1.28)

12
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By evaluating the second term on the left side of (1.26), we tfire relation

%_‘l/_i_v.S:—J.E’ (1.29)

which in integral form reads
i/ WdQ+/J-EdQ:— SO0 (2.30)
dt Jo Q o0

This is one form of the Poynting theorem which in this case loarinterpreted
as an energy conservation law: the total power entering amel2 through the
surfacedf? increases the field energy inside the volume as is lost thraigorp-
tion processes in the medium. In lossless and non-disgensadia the vectoB
can be interpreted as the power flux density carried by thereleagnetic wave,
effectively defining the direction of the power flow across Houndary.

However, this interpretation is valid only in the case of faispersive materi-
als. When dispersion and losses are present the inteipretdtthe stored energy
in the material looses its foundation [2]. In general, thev@oflow interpretation
of the Poynting theorem has to be carefully examined for g@acticular situation

2].

1.1.4 Wave equation

The wave equation is a second-order differential equatibtgined from the orig-
inal system of coupled equations.). Taking the curl of thB)(and using (1.6), we
obtain the second wave order equation for the electric argheie fields

. 02E

2
H
eV x e 'V xH+ Eﬂaa? =0. (1.32)

In the frequency domain when time harmonic fields with fremyev are consid-
ered wave equations become

puV x p IV x E — w?epE =0, (1.33)

€V x € 'V x H — w?euH = 0. (1.34)

For homogeneous media, where the electric field satiSfles= 0 equations (1.31)
and (1.32) become

9°H
~ o

=

_ 2
—Eﬂw—o, V°H

V2E =0 (1.35)

In the frequency domain these become Helmholtz equations

V2E 4+ w?epE =0, V2H + w?euH = 0. (1.36)

13



Chapter 1. Introduction 1.2. Wave propagation.in

Frequently it is convenient to write the physical quantity that appears in the
wave equation in the alternative form

2
€n = n_2 (1.37)
C
wherec = 1/, /€y is velocity of light in vacuum and? = ¢, 1, is dimensionless
quantity known as the index of refraction or refractive idNote that the refrac-
tive index represents a derived, formal construct that doéappear directly in the
Maxwell equations.

Particular care is required with the definition of the (sidh the refractive
index, in cases where the permittivity and permeability @enplex quantities,
with not necessarily positive real parts. The sign of theasguoot in the expression
for refractive index is determined according to the follog/rule:

Re(n) < 0 if Re(e) <0 and Re¢u) <0,

Re(n) > 0 otherwise. (1.38)

The term “negative index metamaterials” refers to situetiovhere the first alterna-
tive of the rule (1.38) applies. The standard model for theogtition in the material
is obtained by taking the complex form of the permittivitydgmermeability in cor-
responding materials [1, 12]. Then, for the complex mateesponse functions,
permeabilitye(w) = €, (w) + i€, (w) and permittivityu(w) = pire(w) + iphim (w),
the complex refractive index(w) = n,e(w) + inim, (w) is given by [13]

n= \e\]uyexp<% {arccot(?) - arccot(%)b (1.39)

Where, in the presence of dispersion all of quantities amerstood to be fre-
quency dependent. For more details see chapter (5) anémeé therein.

1.2 Wave propagation in one-dimensional optical systems

Central subject of this thesis are electromagnetic myéilastructures in which
permittivity and permeability are spatially varying in odiection. We consider
specific models and methods for solving wave propagatiobl@nas that involve
general multilayer structures under external excitatipmboming waves [4, 5, 8].
1.2.1 Plane waves in a linear, homogeneous isotropic media

We are interested in the general behavior of EM waves in gguigncy domain,
so we seek simple solutions to the homogeneous Helmholt&tiequ

(V2 +K?) E(r,w) = 0, (1.40)
that governs the EM fields in source-free regions of spaces He

E(w) = w?e(w)p(w) (1.41)

14



Chapter 1. Introduction 1.2. Wave propagation.in

is the propagation constant. In a rectangular Cartesiardowie system equation
(1.40) reduces to three scalar equations for each compaéneitt, , £, of the elec-
tric field. These equations may be solved by separation ddiblas; solutions of
(1.40) can be presented as

E(r,w) = E(w)e®™ (1.42)

for wave vectokk = [k, ky, k.| and vector amplitude spectruB{w) . The wave
number is the magnitude of the wave vedtof = k* = k2 + k2 + k2. Solution
(1.42) represent propagating plane waves, with planeseasptitial surfaces over
which the phase of the field is constant.

When lossy materials with complex permittivity and permikigbare consid-
ered, the wave vector becomes complex

K = Kye + K- (1.43)

If the real and imaginary parts of the wave vector are callinél.42) describes a
uniform plane wave, otherwise the waves are nonuniform.taeissues related
to the proper determination of the complex wave vector asisen materials are
dispersive and lossy. This is the case for the wave progagati negative index
metamaterials. Some specifics are discussed in chapter 5.

1.2.2 Scattering problems and transfer matrix method

For the propagation of the electromagnetic waves throughapl layered struc-
tures made of the piecewise constant, homogeneous, anopisoiedia without
sources, the vectorial wave equation reduces to two unedugtalar equations
[12]. One distinguishes two types of optical fields: For Bearse Electric (TE)
waves the electric field is perpendicular to the plane sphmyethe direction of
propagation of the incident wave and its projection on tlyedanterfaces, while
for Transverse Magnetic (TM) waves the magnetic field is @edicular to that
plane of incidence. Cartesian coordinates are introduseid &igure 1.2 to de-
scribe the propagation of plane waves through the multilayacks, where the
x-axis is parallel to the layer interfaces, while thexis is perpendicular to the
stack surface, such that the coordinatesnd z span the plane of incidence.

For TE waves the electric field = (0, £,,0) is linearly polarized in the-
direction. Time-harmonic field&(r,¢) = E(r)e~*! with real angular frequency
w are considered. Then under external time harmonic, TE igethexcitation the
field in the medium is described by the scalar functigyix, ) (where we drop the
subscript, to simplify the notation). With this choice of polarizatitime Maxwell
equations reduce, after stratificatiop = 0, to the Helmholtz equation for TE
waves

92 9 1 0 w?

15
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x A
A= >
B -| -
€ £ €, &(2), W(z) &\ €yt
TR R T My [T
-
Z, Z, -1 ZJ g Zyir z

Figure 1.2: An inhomogeneous multilayer structure (i.eratfied medium) with
piecewise constant-dependent permittivity and permeability.. The structure is
invariant along the - andy-directions. Oblique incidence of plane electromagnetic
waves is considered, with incidence angle

Analogously, the principal magnetic compongitof time harmonic TM waves
with y-polarized magnetic field (z, z, t) = (0, H, 0)(z, z)e~ ! satisfies the Helmholtz
equation
0? 0 1 0 w?
(W + e(z)am% + e
Fourier transform along the layer interfaces separates-thadz-dependent parts
of the principal fields, such that these can be representie: iform

> H(z,z)=0 (1.45)

E(z,2) = E(z)eT™** andH (z,z) = H(z)e"*=2, (1.46)

where ther-componentk, of the wave vector now plays the role of a parameter
that is defined by the angle of incidence (cf. Figure 1.2). Ruihe invariance in
the z-direction equations (1.44) and (1.45) become ordinarfgiftial equations

2
<u(z)%ﬁ% + %EM - k:z,) E(z) =0, (1.47)

and )
<e(z)%$% + %ep — k§> H(z) =0. (1.48)

Note that these equations are identical for positiomside the layers with constant
material properties. Differences between the polarinatimanifest only through
different interface conditions at the boundaries betwéendyers. For TE waves,
the quantities

10F

5 (1.49)

)

16



Chapter 1. Introduction 1.2. Wave propagation.in

should be continuous across the interfaces, while comyiradfi

10H
T e dz
is required for TM polarized waves. Note that the followingps are valid also for
complex permittivity and permeability.
Analytic solutions of the Helmholtz equation for the muatier structure of
Figure 1.2 in thej-th layer can be written

(1.50)

Fj(z) = Ajghi=(z=zi-1) 4 pethiz(z=2-1) (1.51)

whereF' replaces thd/—field in the case of TE polarization and th&—field for
TM polarization.%;. is thez-component of the local wave vector in laygdefined

by
2 w? 2
ka = 2 €ilby — k’x, (1.52)

for vacuum speed of light.

We consider a situation when a plane waigz, z) = AgeF=oFko:2 with
given amplituded is incident onto the multilayer structure, coming from a sem
infinite, homogeneous (conventional, transparent dietdanedium, with wave
vectorko; = (kg,0, ko2 ). Its z- andz-components:, = (now/c)sin 6 andko, =
(now/c) cos 6 define / are defined by the incidence angjlevhereny = | /eofig is
the local refractive index of the input medium.

The local wave vector iri-th layer can be expressed as

2 <2 0
hjo = oy 11— 20227 (1.53)
C "I”Lj
inside the layer € [z;_1, z;] with local permittivity ¢; and permeability.;, and
the refractive index defined by; = | /€;711;.

With the abbreviatiom; = 1; for TE polarization and); = ¢; for TM waves,
the continuity conditions (1.49, 1.50) for the interfacevieen layerg andj + 1
can be written as

1 OF;
Fj(zj) = Fjta(z;), and n—ja—;(zj)

1 OF;
= T, 1.54
M1 az (ZJ) ( )

These conditions lead to a system of equations that relatptades in neighbor-
ing layers through the step matrix

5 —ik;j.d; 5 —ik;j.d;
Aj 1 1—1—38—3%1 e Rjzdj l—Js—jl e Rz Aj
2 1 — Sitl ) atikjzd; 14+ Si+1 ) gtikjzd; Bj+1 ’
Sj Sj
(1.55)
with the abbreviations; = £;./n; and where the separate propagation of the di-
rectional waves throughout the layers of thicknéss= z; — z;_; according to
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Chapter 1. Introduction 1.2. Wave propagation.in

equation (1.51) has already been incorporated. Orderetpiiagtion of these
matrices connects amplitudes in each layer of the strucliitlee amplitude trans-
fer is carried out over the full layer stack, one arrives aysteam matrix of the

form
Ao \ [ miu1 mi2 tAg
(7“140>_<m21 m22>< 0 ) (1.50)

Herer andt are the reflection and transmission amplitude coefficiel$suming

that the input and the output regions consists of the coreadt dielectric ma-
terials without absorption, we define the transmittancehasratio of the optical
output and input power [1] (intensity ratio for observatiplanes parallel to the
layer surface)

1

mi1

T(w,0) = nNy1co8On 41

(4.57)
ng cos Oy

and the reflectance as the ratio between the reflected analcidert power

2
R(w,0) = | 2| . (1.58)

mi1

Here the incident anglgis related to the angléy . 1 in the output medium through
the Snell’s law
’I’Lj sin Hj = nj+1 sin 9j+17 (159)

wheren; andd; are refractive indices and (formal) angles in correspanthgers.
This formal expression is valid for any type of material aveérefor NIMs, see
chapter 5 and references therein.

According to the energy conservation law, when material@ssy, a quantity
called absorptance can be defined as

A=1-Rw,0) —T(w,0). (1.60)
It represents the portion of the incident optical power thatsorbed by the struc-

ture and transformed, for example, to the thermal energlyamiaterial.

1.2.3 Periodic multilayers

Consider an multilayer arrangement of two different materwith {e 4, 4} and
{eB, up}, denoted asl and B respectively as depicted in Figure 1.3, with periodic
permittivity and permeability

e(z+A) =¢€(z), and pu(z+ A) = p(2). (1.61)

with period A = a + b. This is a traditional model for periodic optical structsire
that we will use as a basic model in this thesis [1, 4]. Thectiine possesses dis-
crete translational symmetry in contrast to the continuoasslational symmetry

of homogeneous media [8].
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Figure 1.3: An periodic (binary) multilayer structure wjtfecewise constant and
periodic, z-dependent permittivity and permeability.. The structure is invariant
along thex- andy-directions. The thicknesses of layers A and B arandb,
respectively. The unit cell thickneds represents period of the structure.

The wave propagation is described by equations (1.47) ad@)(Tor both
polarizations; the solutions are periodic according toBlach-Floquet theorem
[8, 9, 4]. Thus, a field in the periodic multilayer can be reqar@ed in the form

F(z+A) = e KBAR(2). (1.62)

whereK g is the Bloch’s wave number. The transfer matrix (1.55) catsmampli-
tudes in the adjacent layers

Aj Ty T3 Aj
= 0 -0 ) (1.63)
B To1” 1 Bt
while local amplitudes separated by one period are related a
. . . .
(8= (T8 Y (T ) (42), e
) "\ )\ g g )\ s )
owing to the Bloch-Floquet theorem and equation (1.62), as
A —‘KBA< Ajio >
=e' . 1.65
( B > ‘ Bj2 (169

Due to the periodicity the amplitudes in thg —th and the(j + 2)—nd layer are
the same and equation (1.65) can be written as the homogesgsiem

Tyy — etfnh T2 > < Aji2 > < 0 >
: = . 1.66
< T Tyy — etKsh Bjto 0 (1.66)

Nontrivial solution exits only if determinant of the systematrix T = T/T/=! is
identical to zero:

Ti1159 — 11915 — €iKBA(T11 + T22) + €i2KBA =0. (167)
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The determinant of the unit cell transfer matrixdist(T) = 1 which can be seen
by examining the relation

detT = T11T22 — T12T21 = dﬁtT(j)detT(j+l). (168)

Using the form (1.55) of the transfer matrix it follows that

detT® = 25 and detTU+D = 242, (1.69)
5 Sj+1
which leads to ot s
detT = IHL20+2 ¢ (1.70)
Sj 8

where the conditior; » = s; holds due to the periodicity. Finally, equation (1.67)
simplifies to

1 1
COS(KBA) = B (Tll +Ty) = §t7“T. (2.72)

Equation (1.71) connects values of the Bloch wave vectorfeegliency of the
field through so called dispersion relation

w=w(Kg, ky). (1.72)

If all material properties, permeability and permittiviye real, therp € R,
for given frequencyw € R if and only if |cos(KpA)| < 1. Then waves can
propagate in the medium without attenuation. A range ofdesgies where this
is satisfied is called the pass-band or the transparency. bandthe other hand
there may be range of frequencies for given structure whese KpA)| > 1,
depending on the right-hand side of (1.71). Then solutiothef(1.71) forw € R
are characterized by complex valued Bloch wave veaigre C. These ranges of
frequencies where propagating waves are forbidden aredctile bandgaps or the
stop-bands.

In fact, the suppression of wave propagation for some rarfidesquencies
is an intrinsic property of all periodic media. Electromatio waves in periodic
media with a frequency in to the bandgap are of the evanebgaemti.e waves ex-
ponentially attenuate in amplitude while propagating tigto medium. In contrast
to these evanescent (bandgap) waves, propagating wavesirs@s are named ex-
tended, due to fact that the energy of the waves is distobover whole structure.
An analogy with the electronic band structure in solid sftgsics arises and the
name Photonic Crystals follows form it [8].

Equation (1.71) can be applied to the analysis of more compié cell’s (e.g.
with more then two layers in the unit cell and in arbitraryaaigement) by con-
sidering the trace of the corresponding transfer matrix [Briodic repetition of
the complex unit cell gives rise to the bandgap structurenediones this method,
called supercell method, is used for the analysis of finita{periodic) structures
where the assumption is made that the artificial periodinatioes not change the
optical response substantially [7, 9].
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Another approach to show the physical origin of the banddempmena is of
the multiple scattering description of the wave propageftid,[12],[8]. It amounts
to identifying conditions under which waves interfere domstively or destruc-
tively in such a way to support or reject wave propagationcentain frequencies.
Although, this point of view is physically and intuitivelyewy appealing, it is not
easily tractable in general [12],[8].

1.2.4 Periodic multilayer with defects

Looking at periodic media from a symmetry point of view, thentdgap may be
seen to arise from the discrete translational symmetry efpiriodic media [8].
As it turns out, for the frequencies inside the bandgap waepamation is sup-
pressed and all waves are of the evanescent type. Howeeakibg the symmetry
of the periodic media may give rise to specific types of prapag waves with
the frequencies belonging to the bandgap range. A commoroivageaking the
translational symmetry is to locally change the thickneshe material properties
in specific layer [8]. The emerging periodic parts of the Bhat Crystal enclos-
ing the defect site act as frequency selective mirrors fory&erot type resonator
formed by the defect layer. With a suitable adjustment ofdéfect parameters,
a so called defect modes may be supported by the structureseTdre localized
states with concentration of the energy in the vicinity af thefect in contrast to
the extended states of the pass bands in the periodic seucthey possess real
Bloch wave vector in the frequency range of the bandgap airlderlying periodic
structure [4, 8, 14].

In this thesis, we are interested in the characterizatiahuaitization of these
defect resonances arising in finite structures. They areated as transmission
resonances, i.e. high values of transmittance with theuénegies of the maximum
of the transmittance belonging to the bandgap.

1.2.5 Deterministic non-periodic multilayers

The studies of the wave propagation in multilayers in gdrregard two different
extremes: perfectly periodic media (such as photonic algsand absolutely ran-
dom multilayers. However, there are structures that behaweh like disordered
ones, but are constructed according to a deterministicepiire. These are called
non-periodic deterministic (NPD) media. They possess thpagsties of both pe-
riodic and random structures and also have some distintiré=anot found in
periodic structures [15, 16, 17].

Several classes distinguish themselves, depending origbetlam used for
the stack construction. The first class, called substitalitattices is generated via
a repeated substitution rule. The second large class sygeBlPD multilayers
that are fractal by themselves. They are called multilayactél structures be-
cause they are constructed according to a known fractargeome algorithm [18].
This algorithm has to be stopped at some point in order to delita structure.
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Therefore, any structure obtained in this way is not a gentractal, but rather a
one-dimensional pre-fractal.

The spectral transmission and reflection properties ofiqpextodic and frac-
tal structures were widely studied in conjunction with tbeits such as quasi-
crystals, electronic superlatices and optical multilays, 16]. Some of these
specially designed multilayers have statistically setiiar optical transmission
spectra and the frequencies of the resonance peaks forrotal gat [15, 16]. Op-
tical multilayers are specifically interesting for studyiciassical wave propagation
phenomena in NPD media due to easy fabrication. Many apiglitsaof optical
NPD structures have been proposed as well [19].

1.3 Open structures and quasi-normal modes

An open (leaky) optical structure (or more specifically aempesonator) can be
seen as an inhomogeneity in a finite domain separated froexthdor by a partly
open (transparent) boundary surface. Such an open seucses energy to the
exterior via radiation.

In multilayer structures resonances are manifested age teansmission re-
sponse of the system to the external excitation. More inapdigt, for specific finite
multilayer structures, bandgaps can occur in the trangonisesponse (here these
are frequency ranges with very low transmission in cont@attie bandgaps of in-
finite periodic structure), and of the many resonances drigd in the bandgaps
(the defect modes) have high Q factors to be of practicaleste Then such a
transmission resonance is associated with a purely reqldrey. However, the
notion of the resonance introduced in this way is somewhstuie and hard to
make precise in all cases of practical interest, see chaped 4.

As an alternative model for examining properties of muastructures an
appropriate eigenvalue problem for the characteristionast frequencies (eigen-
values) and associated field profiles (eigenfunctions orasjodf open structures
can be considered [20, 21]. This approach is used in otherches of physics
associated with wave scattering on finite structures [2R, 23

The simplest model of interest in optics, is a multilayeustore withz—dependent
permittivity (refractive index)(z) = n?(z) and constant permeability(z) = 1.
This model describes an all-dielectric multilayer. Assoigna harmonic time de-
pendencef(z,t) = Q(z)e 7!, the electric field for the TE-mode in the interior
x € (L, R) is governed by the Helmholtz equation:

2 w? 2
0:Q + an (2)Q = 0. (1.73)

Viewing the finite multilayer as a passive, open optical dtrites with transpar-
ent boundaries which permit the leakage of energy to theaiekt®utgoing wave
boundary conditions

(8ZQ + z%an)

—0, and (aZQ - #nm@) 0.  (L74)
L C

z= A
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are used. This constitutes an eigenvalue problem, furthtra thesis refereed to
as QNM problem, where the frequengyis the complex eigenvalue and the field
profile Q(z) is the eigenfunction (Quasi-Normal Mode) [20, 24]. Notet tthas
eigenvalue problem is nonlinear because the eigenvalueaspjin the boundary
conditions explicitly [25, 26].

Periodic Defects

Refractive index n(z)
g\
V'

Y

L R

Figure 1.4: Open (leaky) optical multilayer structure wéhergy outflow to the
exterior.

Commonly complex eigenfrequencies and QNMs for this typsrofictures can
be found by solving appropriate transcendental equatioedmplex zeros. This
transcendental equation can be obtained from the corrdsgpiransfer matrix
upon continuation in the complex plane [23]. Methods fowvew this type of
problem are numerous and there is a substantial literateweted to this, a brief
review follows in chapter 2.

A more general method for solving the QNM eigen problem cabdsed on a
suitable variational formulation. With a suitable dis&zation of the relevant func-
tional, for instance by the Finite Element method, an algiebtonlinear eigenvalue
problem is obtained, see [25, 26] and references therein.

In finite structures, without dissipative losses due to giigm in the mate-
rial, the main difference between open and closed opticgirators is that the
resonant frequencies of closed resonators are real, wintetof open resonators
are complex [22, 20, 21]. In formal mathematical languabes, difference arises
because instead of Dirichlet or Neumann boundary conditfonthe closed res-
onator, a radiation condition, allowing only outgoing wayvéas to be imposed.
Eigenfrequencies appear as discrete infinitely countadtl@fscomplex numbers
[22, 20, 21]. However, QNMs (eigenfunctions) are unbounfied: — +oo, SO
they can not be normalized in the usual fashion over the wéddial domain.

Open system do not satisfy energy conservation and thespameling oper-
ators are no longer Hermitian. In general, eigenfunctidnson-Hermitian oper-
ators do not necessarily belong to a complete orthogonad,das rather form a
set of non-orthogonal functions which may or may not be cetep|27, 28, 29].
Decomposing a field on this set, even in the case of some forooropleteness
is not straightforward, and the usual tools involving fietdmposition cannot be
used [12].

Subject of our investigation are resonance phenomena mndimensional op-
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Chapter 1. Introduction 1.4. Negative index metamaterials

tical microcavities that are realized as defects in pecidilectric multilayers,i.e
structures with piecewise constant refractive index ithistion. Suitable boundary
conditions on finite domain can be applied in such a way tfeptbperties of the
open system are preserved [26].

When the time dependent problem of the energy leakage fratm & open
structure is considered, QNMs specify the field patterns liickwthe leaky opti-
cal structure would oscillate naturally after an initiac#ation is withdrawn, thus
representing damped oscillatory solutions of the wave temuaThen, QNMs and
associated complex eigenvalues can be viewed as a propesrfwgssolving the
problem of energy leaking out of open structures, see [2d]raferences therein.
Some results concerning this problem are reviewed in ch@pte

The main aim of the approach described in chapters 2, 3 antb4isow that,
by knowing a set of complex eigenfrequencies and assoc@ids for a given
structure, we can reconstruct the frequency response dfttheture to arbitrary
excitation and/ or arbitrary perturbations of some paransedf the structure. Par-
ticularly the field representation is of major interest. Tpen, leaky nature of the
optical system is directly incorporated.

1.4 Negative index metamaterials

Negative (refractive) index metamaterials are artific@anposites, characterized
by subwavelength features and a negative real part of thectafe index [30, 31].
The negative real part of the refractive index arises in queacy range where the
real parts of both permittivity and permeability are negaf2, 30, 31]. Metama-
terials are usually made of ordered or random arrangemesleaientary "parti-
cles” that furnish designed effective electromagnetipoese functions [33]. An
important feature is that these elementary electric andnetag”particles” are of
subwavelength dimensions with respect to the target wagtiegange. Then anin-
cident wave does not resolve these subwavelength feattiles metamaterial but
rather "sees” the effective medium properties arising fthencollective interaction
of building blocks [34, 35]. In this way, The Maxwell equat®are complemented
with the appropriate macroscopic constitutive relatioorporating the homoge-
nized "effective” response functions for both electric amagnetic properties [36].
A striking consequence of the negative index metamatdsdlsat many of the ba-
sic laws of electromagnetism are reversed from those imardimedia: reversal
of the phase velocity, negative refraction, reversed Dagffect, etc [32, 30, 31].
Negative index metamaterials seen as spatially homogsrsuples dictate
that the phase velocity of an optical wave is in the oppositecton to the direc-
tion of the energy flow, i.e. Poynting vector, giving riselte naméackward-wave
mediaor backward-phase velocity medialso electric, magnetic field and prop-
agation wave vector form the left-handed system which aqunesetly leads to the
nameleft-handed mediaAlthough the terminology is not standard, the name that
encompasses the fundamental property and is mostly usé ilatest literature
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is Negative Refractive Index Metamaterias Negative Index Metamaterialve
choose one of these terms further in the thesis.

The physics, the basic operating principles, and many egiins of NIM are
already proven or made available in the microwave rangd33e83, 38] and refer-
ences therein. Following remarkable results in the mick@vange extended effort
has been directed toward the realization of negative indetamaterials operating
in the optical frequency range [39, 40, 41]. As initial réswdre very promising, it
can be expected that technological advances might evgnarable efficient low
loss NIMs for application in optics.

The possibilities offered by periodic all-dielectric or takdielectric photonic
bandgap media might be greatly expanded by the introducti@bectromagnetic
metamaterials with negative index. Apart from many progoagpplications and
phenomena associated with subdiffraction imaging, s€eai®d references therein,
multilayers consisting of alternating dielectric (posgtindex material or PIM) and
NIM layers offer new possibilities for the Photonic Banddapgineering not at-
tainable by structures incorporating ordinary materi@eme of these new prop-
erties are a widening of the bandgap and flattening of thetigpecansmission
and reflection from finite structures [42, 43, 44], while a #ame time the angu-
lar dependence of the transmission spectra in NIM-comtgimultilayers seem to
be much weaker. Also, extended photonic bandgap engimeedth NIM might
give rise to omnidirectional bandgaps [44] and the so-daikro-n bandgap which
appears when alternating PIM- NIM layers are stacked in suafay that the av-
eraged refractive index is equal to zero [45, 46]. Some tesuiggest that these
properties exist in periodic [46], quasi-periodic [47] aakriodic structures [48].

Our interest in resonances of the multilayer structuresitiglly directed to-
ward understanding the spectral transmission propenmigsultilayer structures
containing NIM. In this respect, we address in chapter 5 atlie&ransmission
spectra of periodic and non-periodic multilayers compdsath positive and neg-
ative index metamaterials.

1.5 Thermal radiation and multilayer structures

The electromagnetic radiation emitted from the materialié® and originating
from heating processes inside the material is called theradlzation [49, 50]. It
represents the physical process associated with the roapizsprocesses of elec-
tromagnetic radiation emission induced by electron tters in atoms, phonon
transitions associated with molecular rotational andatibn modes and crystal
lattice oscillations. In terms of wavelengths, it covers titraviolet spectrum, the
visible light spectrum and the infrared spectrum [51, 11].

The physical nature of processes associated with the theadiiation can be
described only by complementary pictures taking into antéeth quantum and
classical physics [3, 51, 11]. However, in our consideratiquantum processes
associated with interaction of radiation and matter arelleghimplicitly. Because
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we are interested in phenomena associated with electra@tiagraves represent-
ing thermal radiation, we treat them classically: with nosciopic Maxwell equa-
tions and macroscopic material response functions pevityittpermeability and

refractive index.

One of the topics of interest in optics is tailoring emittefabsorptance by
changing the distribution of electromagnetic modes [13]e Theoretical founda-
tion of the modification of thermal radiation by the photobi@ndgap materials
has been outlined in [52]. Thermal radiation is suppressdeguencies inside
the PBG, and enhanced at the frequencies of transmissionarses. In this way
a spectral redistribution of thermal power is achieved. sTéan be interpreted
in terms of a modification of the photonic density of modeshimitthe photonic
bandgap material and thus altering the thermal radiatiectspm.

On the practical side, the design of thermal sources with #maittance en-
hanced in a narrow solid angle has been of interest in thedasyears [53, 54,
55, 56]. Selectivity in both frequency and directionalifytiiese systems might be
seen as effective antenna like behavior; a design goaléittay expected applica-
tions in thermo-photovoltaic systems, infrared imagingtesns, etc. Usually these
systems are implemented with all-dielectric or metalatitic multilayer coatings
on top of an absorbing substrate to enhance or suppressahemssion from the
substrate. This configuration enables thermal radiatiortrabvia the multilayer
coatings applied as spectral and angular filters. This idilkeanplemented by
the available thin-film technologies and it has been prowedtjzally feasible to
obtain antenna-like behavior for thermal sources in theaiftje.

The computational approach used in this thesis relies orKirehhoff law
for thermal radiation and the transfer matrix method. Kiraffi law establishes
an equality between absorptance and emittance for all émxjes, polarizations
and propagation directions for an absorbing material eljethermal equilibrium
[49, 50, 52]. This task is less complex than the direct cormpart of emission
processes but still gives correct result in most of the cabgerest.

Advances in the technology of nanostructured materials @&y to the fab-
rication of materials with optical properties not readiuhd in nature, e.g. of
NIMs for the optical range, see [13] and references ther€ms offers new pos-
sibilities for the device design required for thermal r&idia control. Further in
this thesis, we investigate passive NIM-containing may#rs applied to tailor the
spectral and angular emittance/absorptance distriidran emitting substrate,
see chapters 7 and 8.

1.6 Outline of the thesis

In this thesis we are interested in resonance phenomendidalapultilayer struc-

tures. First, we direct our attention to the development efins for modeling
multilayer structures as open systems. We adopt a quasiaitanode descrip-
tion for both field profiles and transmission/ reflection msges. Specifically, we
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are interested in the field representation and in pertubagchniques for defect
resonances of defect based one-dimensional photoni@atryst

In chapter 2, we introduce the fundamental notion of a rasoman a sim-
ple Fabry-Perot resonator, seen as closed system with loamtblaries, and also
as an open system under external excitation and as a QNMegpnobThen, the
method for solving QNM problems for general multilayer stures is addressed.
A recently developed method of a QNM expansion for solutibiine transmission
problem is briefly reviewed and applied to model exampleshefdptical defect
microcavities in periodic multilayers. This method hasfdsndation in the spe-
cific pseudo-inner product introduced for projecting fieddso the QNM basis and
in the specific completeness property for QNMs. Finallygtimdependent QNM
perturbation theory is considered. The existing theorynfiderature is briefly
addressed along with a novel variational QNM perturbatiwoty.

In chapter 3, we specialize to resonances inside the barafgagiodic multi-
layer mirrors that enclose the defect cavities. We invastidield approximations
and characterization of the spectral transmission usim@ti@nal principle and
field template with only the most relevant QNMs accompaniga lspecific mir-
ror field. The method is applied to symmetric and non-symimstructures with
single and multiple defects.

Following the successful application of the variationahgpiple for the field
representation of defect resonances, chapter 4 deals wighled optical defect
cavities realized in finite one-dimensional Photonic CGalgst Here, single defect
structures (photonic crystal atoms) can be viewed as el@meapuilding blocks for
multiple-defect structures (photonic crystal molecul#h more complex func-
tionality. The QNM description links the resonant behawbindividual PC atoms
to the properties of the PC molecules via eigenfrequenditisgl A variational
principle for QNMs permits to predict the QNMs and the compgenfrequen-
cies in PC molecules starting with a field template incorfiogahe relevant QNMs
of the PC atoms. Further, both the field representation amdesonant spectral
transmission close to these resonances are obtained franmsianal formulation
of the transmission problem using a template with the mdevaat QNMs. The
method is applied to both symmetric and nonsymmetric siagkemultiple cavity
structures with weak or strong coupling between the defects

A second class of problems that we address concerns maltigsuctures in-
corporating negative index metamaterials. The Transfelrikdethod, as out-
lined in chapter 1, is technigue applied for this purpose.

Chapter 5 starts with a brief review of some basic propedidle negative in-
dex metamaterials. Then, we address some novel propeftike bandgap struc
ture and transmission spectra obtained by the introducdidtiM in the construc-
tion of the infinite and the finite multilayers. A second pafrtbapter 5 reviews
some basics concerning thermal radiation. Specificallpdia and Kirchhoff’s
law are addressed. Finally, we introduce the basic condefiteomal radiation
antenna, i.e. a system that enables both spectral andidliv@cselectivity of the
thermal power spectrum emitted by some material object.

27



Chapter 1. Introduction 1.6. Outline of the thesis

Chapter 6 deals with the optical transmission spectra ai@gie Thue-Morse
multilayers composed from alternating layers of media witkitive and negative
refractive index. We investigate transmission resonaandghe field distributions
associated with them for finite structures. The angular diégece of the trans-
mission spectra and the robustness of the transmissionaeses with respect to
the phase shift modulation are investigated. Non-dispeiand lossless, as well as
realistic dispersive and lossy materials are considered.

The design of multilayer coatings applied to enable spkeind directional
control over thermal radiation from emitting substrates baen of interest in the
last years. In chapter 7 we investigate modification of tkeerttal radiation power
spectrum in periodically ordered multilayers containirggative index metamate-
rials. Both on-axis and off-axis radiation are analyzed.

An additional degree of freedom in the design of thermalatin antennas
may be expected when more general multilayer designs atk tsehapter 8 we
investigate wave propagation through one-dimensionakstaf alternating posi-
tive and negative refractive index layers arranged as étedc(pre-fractal) Cantor
multilayers. Dispersion and absorptive losses for botlaxis-and off-axis radia-
tion are taken into account.

Brief remarks on possible directions for future researaficeming the topics
discussed in chapters 2-8, conclude this thesis.
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Chapter 2

Resonances and quasi-normal
modes

Abstract

Subject of our investigation are resonance phenomena icamavities realized
as defects in one-dimensional structures. Upon viewingcthdty as a passive
open system with intrinsically leaky behavior due to thenopeundaries where
waves are permitted to leave the structure, the cavity cachbeacterized in terms
of complex eigenfrequencies and quasi-normal modes (eigetions). Our aim
is to predict the response of the structure to the externait@tion and/or internal
perturbations, solely based on the knowledge of eigenénecjes of the QNMs
supported by the structure. A specific two-component fasmahnd a related
QNM expansion method is briefly reviewed and applied to mexkainples of the
optical defect microcavities in periodic multilayers. #Ja time-independent QNM
perturbation theory is considered.
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Specific subject of our investigation are resonance phenarimeoptical cavi-
ties realized as defects in multilayer structures. Resmahenomena are usually
associated with a large response of an system to some dxécitation. The
response is determined to a large extent by intrinsic ptigseof the system re-
gardless of the excitation. One of the features of all réaliptical structures is
that they are open, non-conservative systems. Apart frassiple material absorp-
tion losses, radiation may escape from the system carryieggg to the exterior
through open boundaries.

For simplicity consider an optical structure with a piecgsvwconstant refractive
index distributionn(z) within the finite domainz € (0, L) and an exterior with
constant refractive index,. The nature of the boundaries is such that they permit
leakage of the energy to the outside, i.e. the structureidsteebe open (leaky)
[20].

A first model of interest is an optical structure without ered excitation with
only the outgoing waves in the exterior. The wave propagasaescribed by the
scalar wave equation for the electric field

O’E(z,t)  n%(z) O’E(x,t)

or2 2 otz 0 2.1)
with associated outgoing wave boundary conditions
OF no oF o OF no oF o
((9—.1' - ?E>x=0 B O’ (ax " c Ot >q::L a O’ (22)

wherec is speed of light in vacuum and exterior refractive indéx_o = n|,—; =
ng. These boundary conditions can be simply checked by spjithie general so-
lution of the wave equation in the homogeneous medium indodvand backward
traveling waves with respect to the orientation of coorthraxis [1]. Such a simple
form of the boundary conditions (2.2) requires that theioités homogeneous. If
a harmonic time dependence for the electric figld, t) = Q(x)e~*! is assumed,
then (2.1) becomes the Helmholtz equation

Q)  n?(x)
Ox? + c?

with outgoing wave boundary conditions

(a—Qﬂw@Q) —0, (a—Q—z‘w@Q> 0. (29
Ox C =0 =L

Q) = 0 (2.3)

Equation (2.3) together with (2.4) represents an eigemvptoblem for the com-
plex frequency as eigenvalue and associated Quasi-NormdeMs eigenfunc-
tion. The eigenvalue problem is nonlinear because the &&mgrency appears in
the boundary conditions explicitly. We are interested intrigial solutions with
negative imaginary part Itw;) < 0 of the eigenfrequency. When considered in
the time domain these fields are damped oscillating solsitistnere the damping
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is controlled by Infwy) < 0. The imaginary part of the frequency is related to
the energy decay and closely related to the Q-factor of thigycaee [22, 26] and
references therein. The eigenfunctions are unboundedeoreti line blowing-
up at spatial infinity. Solutions appear always in pditg, Q%) and (—wy, Q)
[20, 57]. The QNMs are in fact the natural modes of the opstalcture that rep-
resent damped oscillations of the field after an initial &t@n is withdrawn, see
[22, 58] and references therein.

Note that the present 1D eigenvalue problem involves looahbdary condi-
tions. However, in higher dimensions this is not possibld gre radiation con-
dition permitting only outgoing waves can be approximatetl an the form of
nonlocal boundary conditions using Dirichlet-to-Neumanaps [26, 59]. Com-
mon computational approaches then involve local approxims, e.g. by means
of perfectly matched layers [22, 60].

As a second model we consider the structure under an exextaightion by an
incoming wave. The wave equation (2.1) is accompanied bgresprarent influx
boundary condition at the side = 0 of the structure where a given incidennce
wave impinges:

OF n0857 . OF nan' .
(% - ?E)FO =bl0), <£ * 7E>H =0 @Y
where
. 8Em . no 8E‘m
b(t)_2< u )zzo__%( b )FO. 2.6)

represents the incoming wave. This boundary condition ginéd by noting that
the field at the boundary = 0 can be decomposed as the siim= E; + E;,,
wherekF; is the scattered wave component satisfying outgoing wa/e BndF;,,
is the given incoming wave. Then taking the derivative wihpect to the spatial
variable and the time variable at the position of the bounaas 0 and eliminating
E, the inhomogeneous boundary condition follows.

For harmonic time dependence the same Helmholtz equatiBhig2obtained,
now with inhomogeneous boundary conditions

(a—E + iw@E> = b(w), (a—E - @'w@E> —0. 2.7)
=0 =L

For a harmonic incident wave of the forfy,, = A,.exp(“Z2x — wt) the inho-
mogeneity ish(w) = 2iw "2 A;,. With given real frequency € R and given input
amplitudeA;,. given. This is the transmission problem as introduces ipiehdl.

Our aim is to predict the response of the structure to extesxwtation and/or
parameter perturbations, solely based on the knowledg@enhfelds and eigen-
frequencies of the QNMs supported by the cavity.
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2.1 Quasi-normal modes and multilayers

The QNM problem for a multilayer structure with a homogerseeuterior can be
solved by means of adaptation of the transfer matrix methdtined in section
(1.2.2). If only outgoing waves are allowed in the exterithig incoming wave
amplitudeAy is set to zero. Then the equation for the overall transferimgit.56)

becomes
0 mipr mia Ar >
= . 2.8
<AL> <m21 m22><0 (2.8)

whereAr andAj, are the amplitudes of the left and right travelling outgoivayes.
Equation (2.8) can be satisfied with nontrivi&}, Ap if

mi1(w) =0, forw e C, (2.9)

i.e. solutions are found by analytic continuation of (1.56p the complex plane

[23]. In principle one would have to expect infinitely mangctiete solutions with

different algebraic multiplicity, but in the case with hogemeous exterior these
solutions are in fact simple zeros [22]. Note, that this dpion has an equivalent
form that connects the incoming to the outgoing waves vieafled scattering ma-

trices [10]. Then complex eigenfrequencies may be intéegras complex poles
of the scattering matrix [6]. Alternatively, they are polefsthe reflection and the
transmission transfer functions obtained by the multiglattering method [12].

In fact, this is a standard interpretation of the complexeerfgequencies [6]. To

actually find complex solutions of (2.9) we use a standard tdewype method

[61].

2.1.1 Resonances and QNMs of single dielectric slab

If a closed resonator model is considered, fields are idartticzero at the bound-
aries [2], and if there are no internal losses due to matakiabrption, such sys-
tem allows storing of electromagnetic energy forever. Mathtical model of
this system is an eigenvalue problem of the Sturm-Liouwiylee [62, 63, 64].
Eigenfrequencies are real and the eigenfunctions form gplaaenorthonormal set
[62, 2, 12]. Then, an arbitrary field distributions inside ttavity can be decom-
posed into these eigenfunctions (normal modes), whilengastes are identified
with the corresponding real eigenfrequencies and the riarmodes of the system
are standing waves with nodal points at the boundaries [6E2]2

When the optical resonator is open, i.e. the boundarieseotdhity allow en-
ergy leakage into the exterior situation becomes more doatpt. As an example
we look at a simple 1D Fabry-Perot type resonator structutie wo semitrans-
parent mirrors [4]; in our setting this can be a slab of digleenaterial (refractive
index ng and thicknesd g) separated from the vacuum environment (refractive
indexng).

We consider the externally driven system, when waves alideént onto the
structure and can be either reflected or transmitted. Thisresnsmission problem,
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such that we seek for solutions both in the exterior andimtevith specified input
amplitude and real frequency of the incoming wave. Here anasce is usually
understood as a frequency where the transmission coeffigitins maximum a
value. According to a transfer matrix solution (1.2.2)sieasy to show after some
algebra that the transmittance can be written as

T(w) = (1-—r?° (2.10)
1+ 74— 2r2cos(2%n,Ls)

wherer = ~=— "0 is the interface amplitude reflection coefficient. The traission
resonance?(th) = 1 occur when the frequency attains values with

c0s(2ZnsLy) = 1, Orwy = p—o, for p==+1,42,+3, ... (2.11)
&

nsLs’
In fact this can be interpreted as a condition for constvactnterference, i.e.
round-trip of the wave in the resonator is an integer mutipf the wavelength
[1, 4].

If we require only outgoing waves in the exterior, then duthtosame simple
transfer matrix representation the system of equationsbeagatisfied only for
complex frequencies

e

Wg=p———1
q
ngLsg Nslig

In(1/r) for p=+1,+2,43,... . (2.12)

Note that the same result can be obtained if one find complies d (2.10).

When the thickness of the slab is set to be quarter-waveidngt= ;TO for tar-
get wavelength\y = 27¢/wy, the transmission resonance frequencies and eigen-
frequencies reads

wir = p(2wp) and wy = p(2wg) — i@ In(1/r). (2.13)
™

Note that the transmission resonance frequencies and aeal @f the complex
eigenfrequencies are identical. Therefore, incident waveerfectly transmitted

if the frequency of the incoming wave is identical to the rpait of a complex

eigenfrequency. However, if a multilayer is considere@, réal parts of the eigen-
frequencies and the transmission resonance frequen@esoaequal in general,
although they may be very close [65]. We may expect in morepticated struc-

tures that a resonant transmission occurs when the freguértioe incident wave

is close to the real part of a complex eigenfrequency.

2.1.2 QNMs and defect resonances in multilayers

As an example we compare a periodic and a defect structuredcas| / L)% H
and(HL)*2H(LH)* respectively. Herél and L denote high and low index lay-
ers with refractive indicesy; = 3.42 andn;, = 1.45. The thicknesses are cho-
sen as quarter-wavelength with respect to the target waytle, = 27c/wy =
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Figure 2.1: Complex eigenfrequencies for periodic mutglaA) and defect mul-
tilayer B).

1.55 um. Defect structure has a central layer of half-wavelengtbtktiess. All
materials are assumed to be nonmagnetic.

Solutions of equation (2.9) are the complex eigenfreqeandepicted in Fig-
ure 2.1. For the periodic multilayer they appear to be amdrigroughout complex
plane in a specific pattern with distinctive strips beingwiit eigenfrequencies as
shown in Figure 2.1 A). These regions (gray patches) seere treminiscence
of the bandgap structure associated with the infinite paristiucture. Indeed, the
edge frequencies of the band-stop frequency range for tite ftructure under
external excitation (not shown here) are close to the reds md edge eigenfre-
guencies, i.e those closest to the strips in Figure 2.1 Ag.iffinite countable set
of e eigenfrequencies may be partitioned into the sets @nfigquencies having
the same imaginary, with their real parts being integer iplelof 2wg. Similar ob-
servations also have been made in [65]. For the defect steueigenfrequencies
are present inside the "bandgap” region as can be seen imeF&yli B). This is
expected from the known property that in the spectral trasson of this structure
a transmission resonance appears inside the bandgap$g, 8,

Owing to the similar structure and the arrangement of theptexneigenfre-
quencies in the complex plane for the periodic and defegtiires, same relation
between these two situations might be expected. Let uswitrtthe structure
(HL)*xH(LH)*, wherex € (1,2), meaning that fory = 1 structure is peri-
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Figure 2.2: A) Eigenfrequencies for the periodic and deffealtilayer B) Shift of

the band edge eigenfrequency with a quasi-continuousageref the width of the
central layer C) QNMs for band edge eigenfrequency (peziadiltilayer) and D)

defect eigenfrequency (defect multilayer) .

odic and fory = 2 it becomes a defect structure. Corresponding eigenfreiggn
inside the first band are depicted in Figure 2.2 A). By chagdire parametex
in a given range and by computing eigenfrequencies in eaghvee are able to
track the eigenfrequencies in the complex plane. We obdéatethe bandedge
eigenfrequencyp shifts inside the bandgap and in fact turns into the defgerei
frequencywp with very small imaginary part and with it's real part in thedale
of the bandgap, as shown in Figure 2.2 B).

Corresponding QNMs for these two extremal cases are shotwigume 2.2 C)
and D) for eigenfrequenciesp andwp respectively. We observe a drastic change
of the QNMs profile. Whereas the QNM forp appears to be almost equally
distributed throughout the whole structure, the one aasediwithwp is localized
in the vicinity of the defect layer, with noticeable amptieienhancement. These
properties are similar to those of field profiles associatétli wansmission and
defect resonances [4] as well as those of pass-band statedefect states, i.e.
extended and localized states in the infinite structure [8].

The eigenvalue problem for an infinite structure with peigdsbundary con-
ditions leads to a spectrum with in general both discrete @mdinuous parts,
characterizing structure in terms of bandgaps [8]. Theepatbbserved above in
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the QNM spectrum of the present finite structure, suggestsmamalogues. Some
results concerning the aymptotics of the QNMs spectrum tifiecure is infinitely
extended were reported for 1D problems dealing with séagaesonances and
bandgaps of finite and infinite periodic potentials in quamtnechanics, see [67]
and references therein.

2.2 Two-component formalism and QNM expansion

The full set of complex eigenfrequencies and QNMs suppobtedn arbitrary
multilayer structure on the one hand, and the spectral mimsson and the field
profiles for the structure under external excitation on ttheeohand may be seen
as two ways to describe the properties of the optical syst€ansequently, us-
ing QNMs and the corresponding eigenfrequencies as a meatisefsolution of
the transmission problem seems to be a reasonable way tedaese two de-
scriptions. For this task a certain QNM expansion methothha been proposed
recently [24] may be used. The method is based on the thedlinemlin [68]
and the two-component formalism described in [69], [70]isTthethod has been
adapted recently for 1D photonic crystal structures, sbeq6, 72] and references
therein.

We review some results concerning specifically approxiomagtiof the spectral
transmission and the associated fields in the transmissadiigmn. Examples for a
single defect 1D photonic bandgap structure with commansome silent features
of the outlined method are given below.

Time domain The problem described by the second order wave equatioh (2.1
can be expressed in terms of two first order in time equatiprsjided that two
components are introduced: the field variabler, ¢) and a component often called
conjugate variable, defined d¥z,t) = ”i(f)atE(m,t). The full description is

then given via the vectdE = [E£ E]T. If we introduce an operatdi defined as

0 <
H— ( 5 e ) , (2.14)

then the time evolution equation reads

OE = HE, (2.15)

and is accompanied by outgoing wave boundary conditions

(8_E_£§> _o, (a_E+£E> —0. (2.16)
or no ), or  no ) ,._p

The time evolution equation in the two-component form (2h (2.16) is equiv-
alent to the second order wave equation [73].
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Frequency domain For harmonic time dependence in both componEiiis t) =
Q(z)e ™t the QNM problem reads

HQ(z) = (—iw)Q(x) (2.17)
with boundary conditions
<5_Q _ i@) 0, <8_Q n i@) ~0. (2.18)
dor  ng ), or  no ),_

Note that this eigenvalue problem is linear because thenedd@e is not explic-
itly present in the boundary conditions. Two component migection is given
asQ(z) = [(Q(z) — iw%@(m)]T where( is the same as the solution of the
problem (2.3), (2.7).

2.2.1 Pseudo-inner product, orthogonality and completerss

Let us introduce bilinear map for the two-component funwiwvith the following
form

L
(EM E@) :/ (E(l)E(Q) —|—E(2)E(1))dx+ o (E(l)E(Z) om0+ EWE® lo1.)-
0 C

(2.19)
The time-evolution operatol is symmetric under this bilinear map within the
space of functions satisfying outgoing wave boundary deds. The symmetry
subsequently leads to the orthogonality of the QNMs andbskes a projection
technique for QNM expansions suitable for open opticalcstmes, see [24] and
references therein.

Note that this bilinear map involves two components, i.ethldeld and the
time-derivative of the field! Also, the bilinear map explicitly incorporate bound-
ary data. Therefore in the frequency domain bilinear map beadlifficult to apply
for arbitrary fields. This is one of the reasons to use the &ism first in the
time-domain and then apply a Fourier transform to obtainfteguency domain
description. Note that (2.19) is not positive definite.

Although this seems to be a complication if (2.19) is usedhaibitrary func-
tions, benefit is that due to the symmetry of the time evolutperator and the
orthogonality of the QNMs the bilinear map may be used for ffgctve projec-
tion onto QNM basis. Therefore it may be seen as pseudo-pnogiuct [27, 28].
Some relations of this bilinear map with the usual inner pobdhave been consid-
ered in [74, 75].

Symmetry With the bilinear map (2.19) the operator (2.14) is symnadtrithe
space of functions satisfying the outgoing wave boundangditimns

(E(l),HE(2)> = (HE(l), E(2)>. (2.20)

When considered in the frequency domain, for QNMs thatfyaf#s17), in a single component
form it also involves the frequency explicitly in (2.19).
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To show this property, let us start from the left-hand sidéa20)

L ~ 2
(EW, HE®@)) = / da((EW2E® + E(l)CTE(Q)) + S (2.21)

0 n?(z)
where ) 9
Si= P (BOGED),+ (BVGED) ). @22
0 0

Next, let us apply partial integration twice in the first igital (2.21) and use bound-
ary conditions (2.16) to obtain

L R 2
(EMW HE®) = / (E(Z)c‘)gE(l)+E(2)ZCTE(1))dw+S1+S2+St. (2.23)

0 n?(z)
where
S = (EWa,ED) |§= -5, (2.24)
and
g — (E®p O (b= 0 (5@ C B £ R0 2 o5
> =—(BY.EY) y=—(( nZ )oo T ( > )or) (2:25)
Finally, we get
L R 2 -~
(EM HE®)) = / (E@o2EW + B — ( )E(l))dm—i—SQ (2.26)
0 ne\x

which is equal to the right-hand side of (2.20) and provesjmemetry ofH under
action of the bilinear map.

QNM orthogonality From the symmetry of the operat®t defined in (2.20)
follows the orthogonality of the eigenfunctions (2.17).rski let us assume that
there are two distinct solutioné-iwy, Q;,) satisfying the eigenvalue equation

HQp = (—iwy) Q.- (2.27)
Let us project (2.27) onto QNMS,,,
If we use the symmetry df{ and the linearity of the bilinear map, we obtain
and
(_iwm)<Qm7 Qk> = (_iwk)<Qm7 Qk>7 (230)
which gives
(wm — wi)(Qum, Q) = 0. (2.31)
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If we assume thaty, # w,, for k # m the relation above requires

Q> Qk) = Nk, (2.32)

whered,,,. = 1if m = k, andd,,,,, = 0if m # k ; the normalization constamy
is a complex number.
For valid QNMs, solution of (2.10Q;, = [Qx — iwk’c‘—iQk]T we have

. L n’(z) 2 o 2 2

(Qr, Qr) = 2(—Wk)/0 <C—2de$> t ((Q)a=0 + (Q})z=1) - (2.33)
Thus, the bilinear map (2.19) provides orthogonality ietet of eigenfunctions
in the two-component formalism. We will exploit this propem the following
sections. This relation can be obtained directly from thémeltz equation by
simply multiplying (2.3) with appropriate QNMs, subsequeartial integration,
and using the outgoing wave boundary conditions.

Note, that the norm associated with the QNMs via bilinear isap general

the complex number and thus can not be interpreted as ussiVpalefinite norm
[24].

Completeness of QNMs Let us introduce a simultaneous expansion of both
components of an open cavity fiel(;i(x,t) and E(z,t) in terms of the compo-
nents of the eigenfunction@(x) andQ(x):

[e.e]

E(z,t) = > ax(t)Qx(). (2.34)

k=—o00

The same time dependent coefficieptt) is used for both components.

Given the orthogonality of the QNMs, the two component fdisma suggests
appears to provide effective projection technique for a Qékgansion based on
the introduced bilinear map. However, the approximatiory fve better justified
if some completeness property for the full set of QNMs candtal#ished.

In [69, 68] the completeness of QNMs has been approachedghra repre-
sentation of the Green function satisfying causal init@ditions and asymptotic
outgoing wave boundary conditions. The following relati@re obtained:

i % =0, for z,y €0,L] (2.35)
k=—00 ’
and
f: ni(;) wk?(gg)(i';(y) =d(x —y), for z,y €[0,L]. (2.36)

k=—o00

These relations are interpreted as completeness relatiwtes the specific condi-
tions that exterior of the structure is homogeneous andt(2s3valid only inside
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the domain of the structure [69]. The reasoning on compésgproperties for
QNMs in [57, 76, 77] led to the observations that the set of@NMs is in fact
overcomplete. Then, uniqueness of the QNM expansion is natagteed any
more.

2.2.2 QNM expansion and exponentially decaying fields

Let us represent an arbitrary field inside the cavity, théisBas outgoing wave
boundary conditions (2.16), in terms of quasi-normal mo@34), and project
with (2.19) this distribution onto a QNM eigenfuncti@p,,:

o0

(Qu E) = (Qu, D ar(t)Qy). (2.37)

k=—0c0

Next, orthogonality of the QNMs leads to

(Qg, E) = ak(t)(Qx, Qr), (2.38)
which gives a projection formula for the expansion coeffitse
<Qk7 E>
ag(t) = ——~. 2.39

To solve the problem of the time-evolution of an initial agati cavity field, sub-
jected to outgoing wave boundary conditions, let us difigede with respect to
time the projection formula (2.39):

(Qu; %E)
Orap(t) = ~=———". 2.40
rak() (Qk, Q) (2.40)
Then from the time evolution equation (2.15) it follows that
Orap(t) = ~—————=. 2.41
) =10, Qn 241

The symmetry (2.20) df{ and the eigenvalue equation (2.17) lead to

Orai(t) = 2.42
) =0, (242

According to (2.38) the expansion coefficients satisfy tipeagion
E?tak(t) + iwkak(t) =0. (2.43)

This equation describes the time evolution of an arbitragidfinside the cavity
satisfying outgoing wave boundary conditions in terms ef¢cbmplex frequencies
corresponding phase factors in the expansion

[e.e]

E(z,t) = > ap(0)Qg(x)e™™*!, for >0, (2.44)

k=—o00

40



Chapter 2. Resonances and quasi- 2.2. Two-component formalism.

where
(Qg, E(z,0))

The initial conditions necessary to be specified in this @seboth field compo-
nents at the time = 0, that isE(z, 0) and E(z, 0) = Li(f—)atE(m, 0).

The representation of time-exponentially decaying staigesimilar QNM su-
perposition has been considered in [78]. In particulara& been shown that de-
caying state can be represented by a QNM superposition foe smooth initial
conditions in a localized spatial region, see [78] and exfees therein.

a,(0) = (2.45)

2.2.3 QNM expansion and the transmission problems

In the transmission problem, multilayer structures intesgith the environment
through external excitation by an incoming wave. We are isgek description of
the transmission problem via a QNM expansion method [73]},[61],[72].

Time domain The total field of the optical structure subjected to the mflom
one side is described, within the two-component formalisynmeans of the time
evolution equation (2.15) and the transparent influx bogndanditions

oF c ~ oE C ~
<8_x — n_0E> . = b(t), <8_x + n_0E> . =0, (2.46)
where e -
b(t) = —2—(Ein)z=0- (2.47)
L

First, let us expand the total field in terms of QNMs

o0

E(,t) = Y am(t)Qun() (2.48)

m=—oQ
Next, we project the total field onto the QNM basis

[e.9]

(QrE) = (Qr D am(t)Qum) (2.49)

m=—0oQ

Orthogonality of QNMs, invoked in the right-hand side gives

(Qi, E) = ar(t)(Qg, Qg)- (2.50)

To obtain the time dynamics equation for the coefficientshmdxpansion, let us
differentiate with respect to time

Dpap(t) = S IE) (2.51)
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Using the time-evolution equation (2.15) this can be wmitte

Oap(t) = ~————. 2.52
0 =10 Qu) (2:52
According to the definition of{, we have
A - r
HE = <2—E,a§E> , (2.53)
n?(x)

and consequently in (2.51)

L ) 2
(Qy, HE) = /0 dx (QzﬁmE + anQ—(x)E> + S, (2.54)
where , )
5, =20 ((Qﬁ—ﬁ) + (Q,f—ﬁ) > : (2.55)
c ng =0 U =L

Further, let us partially integrate twice in the first intalg(2.54) and apply out-
going wave boundary conditions for the eigenfunctions dmedttansparent influx
boundary conditions for the transmission field to obtain

2

L
(Q, HE) = / dx <E8§Qk + QkC—E> + 51+ 52+ S, (2.56)

0 n?(x)
where
S1 = (Qud:E) |§= —Qr(0)b(t) — S, (2.57)
and
_ im0 (5 5
Sy = — (E0,Q) |g= p <<En8Qk> - + <En8Qk> x:L) . (2.58)
Upon identifying that
L 2
(HQy,E) = /0 dx (EaiQk + ang—(w)E> + S (2.59)

follows the relation

(Qr, HE) = (HQy, E) — Q1(0)b(t). (2.60)

After using the eigenvalue equation and orthogonality of\@Nrom (2.52) the
time- dynamics equation for the expansion coefficientsgead

atak(t) + iwkak(t) = —%. (2.61)
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Therefore, in the presence of an incoming wave the coeffiarthe expansion of
the total field are determined as solutions of the inhomogesequation (2.61).
If there are no incoming waves, the equation becomes honeogsnas expected.

Note that in (2.61) the incoming wave excites all QNMs sugmbby the struc-
ture. However, a certain time interval after the excitationvithdrawn the time
domain fields may be well approximated by one or few QNMs. Hsigecially
holds when defect QNMs with small imaginary parts are careid, see [26] and
references therein.

Frequency domain To obtain a description of the system in the frequency do-
main let us perform a Fourier transform wiftiz, w) = ff;o f(z,t)etdt, where

w € R, on all quantities of interest. First, we take only the firstnponent in the
expansion formula (2.34) for the field inside the cavity:

oo

B(z,w)= Y ap(w)Qi(@). (2.62)

k=—o00

Further, we Fourier transform the equation for the expansiefficients (2.61)
that include the contribution from the incoming wave (2.6) :

Qu(0)b(w) 2.63)

") = T Qo — o)
where
b(w) = —250@ (0,w) = 2iw%EZ— (0,w). (2.64)

From the continuity conditions for the field on the structboaindaries it follows
that
E(07w) = Em(O,W) + Es(07w) (2.65)

and
E(L,w) = Ey.(L,w). (2.66)

Here E; represents the reflected, left traveling wave in the regioa 0, Ey, is
the transmitted right traveling wave present for> L. This enables us to relate
the incident wave to the expanded fidldn the frequency domain. The amplitude
transmission coefficient is defined as

Etr(L, W)
==/ 2.67
so we can write the expression for the transmission coeiticie
> L

¢ k——00 <Qk7 Qk>(w - W]f)
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If we apply the sum rule (2.35) the expression for the trassioin coefficient ob-

tains the form -

_ oMo wiQk(0)Qk (L)
¢ (QuQu(w—w)

which turns out to be the one with (much) faster convergeAc@milar expression
can be obtained for the reflection coefficient

t(w)

(2.69)

[e.e]

_ E0w) _,m0 wQi(0)
W= e e 2 n Qe )

. (2.70)
k—=—

The transmittancd’ and reflectance? (relative transmitted and reflected optical
power) are given by

_ 2 _ 2
T(w) = |t(w)|*, and R(w) = |r(w)|*. (2.71)
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Figure 2.3: Spectral transmittance determined by (2.68pudifferent numbers of
basis functions for periodic defect structure.

Consider the defect structure of section 2.1.2. Figure @3pares the spectral
transmittance (2.71) computed by TMM with the approximat{@.69) for differ-
ent numbers of basis fields in expansion. In Figure 2.3 A)ésemant transmission
around the defect resonance is depicted. Good approximatithe spectral trans-
mission is obtained with only one term, i.e. the contribaital the QNM with the
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Chapter 2. Resonances and quasi- 2.2. Two-component formalism.

real part of the eigenfrequency closest to the frequendyenflefect resonance, see
Figure 2.2 A). Naturally, it is expected that approximatiomproves when the num-
ber of basis functions, here the number of terms in (2.69hdseased to include
contribution from other QNMs. Figure 2.3 B) depicts resottluding five QNMs,
those associated with the defect and four of the bandedgmfeéggiuencies. As
can be seen the spectral transmission around the bandegige i®not adequate
which should not be a surprising result as the contributionsther QNMs may
not be negligible in these regions. However, as depicteldrinset of Figure 2.3
B), the approximation of the spectral transmission arotediefect resonance gets
worse. Further increasing the number of basis functionsdrgs approximation
of the spectral transmission in the whole frequency rangeamound the defect
resonance. A result with 19 basis functions belonging tdfiiseé band (see Fig-
ure 2.2 A)) is shown in Figure 2.3 C). With larger number ofipdsnctions the
spectral transmission may be approximated up to the desired Similar exam-
ples of an approximation of the spectral transmission foiode multilayers have
been considered in [65, 72, 79].

)
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Figure 2.4: Field profile for transmission resonance; exddiM solution and
QNM expansion approximation.

The somewhat odd behavior of the QNM approximation may besrstood
better if the fields are considered directly. In Figure 2.4 shew comparisons
between the QNM approximation and the TMM solution of thedfigtofile asso-
ciated with the defect resonance resonance- wgy. Note that the transmission
resonance in this configuration is a fully transmitted fie&tduse the structure
possesses a spatially symmetric refractive index didtdbu This is a somewhat
extreme situation, because reflected waves (outgoing coemp® of the total field)
at the left side of the structure are not present. Therefeaature and properties
of QNMs are totally opposite to the fields that have to apprated.
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Chapter 2. Resonances and quasi- 2.3. Time-independent.

In Figure 2.4 A) both the TMM result and the QNM approximatieith only
one basis function is shown. Itis clear that field is globsbyy well approximated
when considered on the extension of the whole structure. ddery as depicted
in the inset fields are indeed different in a localized regidkround the input
boundary this observation seems not to be entirely appesetia the literature
because usually comparisons of the modulus of the fieldsarsidered. If the
number of basis functions is increased the field approxondiecomes better, and
the localized region where the fields are different shrirskshewn in Figure 2.4 A).
Nevertheless, a characteristic oscillation of the appnaxed field around the exact
solution (ringing artifact) demonstrates a form of the vkalbwn Gibbs phenomena
[28]. This observation suggests that the QNM approximatiay approach the
exact solution only when an infinite number of the basis fianst is included.
Moreover, the approximation is valid only inside the stanetup to the boundaries,
see [69, 70, 73] and references therein.

Note that the nature of QNMs and the related expansion metfegdomewhat
special as the QNMs are solutions of a non-Hermitian eigaevaroblem. Then
the completeness of the QNM basis, a uniqueness of the egpamlsmd conver-
gence of truncated sums using QNMs can not be guaranteedrnyestt methods,
see [24] and references therein. Indeed, [57, 77] pointdmtter-completeness of
the QNM basis set. Therefore, coefficients in the QNM expansiay be deter-
mined in different ways. Moreover, as we already encoudteging the deriva-
tion of the spectral transmission, e.g. the manipulatiomelving the summation
rules (2.35),(2.36), special techniques have to be usqukdsup the convergence
of sums incorporating QNMs. Usually, for this purpose ongliekly uses similar
re-summations of QNM expansion series according to the @emess relations
[70].

The formalism using the pseudo-inner product as describedqusly may be
appealing as if transcribes the derivation and form of thelisigenfunction ex-
pansion technique. However, an alternative approach maatreed out without
any reference to the completeness property or a pseudofmoduct if a varia-
tional form of the transmission problem and a field templaitl & truncated sum
of QNMs from the whole set is used, see chapters 3 and 4. Thgorsdrity of the
functional determines the relevant coefficients in the QNsansion.

2.3 Time-independent perturbation theory for QNMs

The previous results suggest that the QNMs supported by tirabgtructure con-
tain all necessary information about intrinsic structymadperties that control the
response of the structure to some external influence. Howewmplexity of the

QNMs computation for an arbitrary optical structure are meahat limiting fac-

tor for rapid and accurate analysis. Therefore, an pertioribdheory for QNMs

is of interest to provide an approach to computation of cempgigenfrequencies
when internal perturbations of the structure are applied.
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After the results regarding the completeness propertypfieeido-inner prod-
uct, and the two-component formalism, a time-independertupbation theory for
QNMs has been outlined in [70]. The formalism provides aliv@gions in close
analogy to usual time-independent perturbation theory228 We briefly review
this procedure in the following subsection.

2.3.1 QNMs perturbation theory and two-component formalisn

A time-independent perturbation theory for QNMs can bewderifrom the two-
component formalism [70]. Let us assume that some changsfratctive index is
represented as:

o ®) = @) (14 AV () 272)
per or

wherey, is the (small) parameter related to the change of refradtislex in the
structure. The perturbatio¥i(x) is nonzero only inside the computational domain
x € [0, L]. The eigenvalue problem for the perturbed structure is

(1O + pun) QP = (—iw”) Q, (2.73)

with the operator of the original (unperturbed system)

c2
2O _ ( (;)2 @ ) 7 (2.74)
and the perturbation operator
0 —2—V(z)
A= nrg(2) . (2.75)
0 0

Let us assume that the unperturbed eigenvalue problemviecsahd eigenvalues
and eigenfunctions are known

(1) Q) = (~iwf”) QY (2.76)

Then, perturbation theory seeks for solutions of the eiglergvproblem with eigen-
values and eigenfunctions expressed as a power seriessmtdeparameter:

=3 () wf) (2.77)

j=0

and .
QY =3 () QY (2.78)

=0
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Next, we substitute (2.77) and (2.78) into (2.73) and grarms with the same
order iny to get:

HOQY = (~iw”) Q) (2.79)

(1O = (<)) QP+ (A= (=iw")) Q" =0 (2.80)

which are the terms up to the first orderin Let us project equation (2.80) onto
the eigenfunction of the unperturbed syst@éﬂ):

@, (1™~ (=) ) Q)+ @, (A= (—iwf”) ) @) =0 @8

Due to symmetry of thé{(?) and orthogonality of the eigenfunctions the first term
vanishes and from the second term it follows that

Q. 4Q1") = (~iw") @, Q). (2.82)
Therefore, the first order correction to the complex fregyes given in the form

QY AQ")
YT L0 A0
< k 7Qk >

which gives first order corrections of the real and complestspaf the frequency.
The first order eigenvalue correction requires only the getige eigenvalue and
eigenfunction of the unperturbed system, while higher omierections include
summations over all QNMs [70].

Although this approach is similar in form to the usual pdyation theory [28],
it has been scarcely applied for the concrete analysis aérgéstructures. This
is partly because it relies on the completeness propertypartty due to fact that
higher order approximations obtained are slowly convergew require special
acceleration methods to obtain faster converging seri@s [7

(2.83)

2.3.2 Variational QNM perturbation theory

A path toward a perturbation theory for QNMs that does nat oel the complete-
ness of the QNMs basis set or the pseudo-inner product isetdhasvariational
formulation of QNMs (eigenvalue) problem, see chapter 4e €an start with the
functional

1WNQ

1 w?n?(z)
2 2¢

L
£o(Q) =1 /0 (0.Q)? — 2 020)) da

9 c (Q2|:v:0 + Q2|:v:L)-

(2.84)
If £ becomes stationary, i.e. if the first variation®#anishes for arbitrary varia-
tions of , then() satisfies the Euler-Lagrange equation (2.3), and (2.4) asata
boundary conditions.
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Consider a perturbation of the structure that can be expdess a local pertur-
bations of the permittivityn?(x) = n2,,(x) + n2,(x) for = € [0, L]. Letus as-
sume thatwy, Qo) is the known solution of the QNM problem for the unperturbed
structure with permittivityngrg. The value of the functional for the eigenfunction-
eigenvalue pair is zerg,,,(Qo) = 0. This property that can be shown by integrat-
ing the first term in the (2.84) by parts.

Small in effect perturbations of the original structure @idanot change greatly
neither the position of the complex eigenfrequency in themex plane nor the
shape of the corresponding QNM. Let the exact solution feprturbed structure
be(w, @) with eigenfrequency = wy+dw. It can be easily shown that the restric-
tion to the QNM solution of the unperturbed problé~ )y and the stationarity
of the functional leads to

(wo + 5w)2(A0(Q0) + .Apt(Qo)) + (wo + dw)Bo(Qo) + Co(Qo) ~0 (2.85)

where .
Ao(Qo) = —$ /0 n2(2)Q2(x)dx, (2.86)
L
Apt(Qo) = —% ; nf,t(w)Qg(w)dw, (2.87)
BO(Q) = _216 (ninQQ‘x:O + nothz‘x:L) ) (288)
L
Q) = [ (0.Q) du. (2.89)

After evaluating (2.85), the correction to the eigenvalpdaifirst order reads

w2
% [ n2y () Q3 (x)dx

- L . .
20# f() nng(l’)dil’ + mTO (Qg|x:0 + Qg|m:L))

Consider the example of single cavity structure coded®5)* D(LH)*, with
ng = 3.42 ny, = 1.45, enclosed within two semiinfinite media of the same refrac-
tive indexny = 1.0. All layers are quarter-wavelength, except the centrabctef
layer that is half-wavelength. Perturbation of this stnoetis a localized change
of the defect layer refractive index* = n% (1 + x) with x € (-0.1,0.1). The
thicknesses and refractive indices of other layers areffettad.

Figure 2.5 A) compares positions of the complex eigenfraqigs for the per-
turbed structure computed according to the first order peation theory formula
(2.90) with the direct computation. Note that the pertudratheory correction is
tangent to the eigenfrequency path in the complex planeiguar€& 2.5 B) and C)
the dependence of the real and imaginary parts of the congdexfrequency on
the defect layer refractive index is shown.

The variational perturbation theory may be extended todigitder correc-
tions. Then variational accuracy guarantees that certaleroof the perturbed

Sw = (2.90)
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Figure 2.5: Complex eigenfrequencies for the single-ded&racture obtained by
direct computation of eigenvalues for the perturbed stmegtand by first order
perturbation theory .

eigenfrequency is determined by lower order eigenfunstidgising subsequently
suitable restrictions and the stationarity of the funciipan iterative procedure for
determining higher orders correction to the eigenfreqgigsnand QNMs may be
obtained.
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Chapter 3

Field representation for optical
defect resonances in multilayer
microcavities using quasi-normal
modes

ABSTRACT 1!

Quasi-Normal Modes are used to characterize transmisssonmances in 1D op-
tical defect cavities and the related field approximation8e specialize to reso-
nances inside the bandgap of the periodic multilayer mgrbrat enclose the de-
fect cavities. Using a template with the most relevant QNMaritional principle
permits to represent the field and the spectral transmissioge to resonances.

This chapter is adapted from: M.Maksimovic, M. Hammer, B.Goesen, Field representation
for optical defect resonances in multilayer microcavitiegg quasi-normal modes, Optics Commu-
nications, 281, 1401-1401, 2008
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3.1 Introduction

When subjected to external excitation, periodic multitagteuctures show a reso-
nant response in the time or frequency domain, which caniloegd by inclusion
of defects [8, 7, 9, 4]. Finite structures can be viewed asyapestems which
permit the leakage of energy to the exterior, described byH@lmholtz equation
with outgoing wave boundary conditions. This constitutesgenvalue problem
for complex frequencies and the associated field profileguasi-normal modes
(QNMs) [20].The quasi-normal modes specify the field paten which the leaky
optical structure would oscillate naturally after an wlitexcitation is withdrawn,
representing damped oscillatory solutions of the wave wBoud24, 58]. QNMs
and associated complex eigenvalues can be viewed as a prmuoei for solv-
ing the problem of energy leaking out of open structures,[8e20, 24, 26] and
references therein.

Our aim is to use the characterization of the optical micritgastructures in
terms of quasi-normal modes to describe approximately éberrant response to
external excitation in the frequency domain and the rela&dd profiles.

For specific configurations the complex QNM eigenvalues appe corre-
spond to the position and quality of resonances in the secémsmission. Al-
though this holds when spectral resonances are sufficiéatlgpart from each
other, this is not a general property and real frequenciémon$mission resonances
can be quite different form the real parts of the complex QN@éerfrequencies in
the given frequency range [79].

Field representations using QNMs have been investigat¢doin6s, 71, 72,
80], on the basis of quasi-normal mode theory as establishg#], founded on
certain completeness properties and a linear-spaceusiefor QNMs [68, 69, 70].
Orthogonality of QNMs is expressed with a specific bilineami that includes
boundary terms and in contrast to the usual inner product doedefine a real,
positive definite norm [74, 75]. An eigenfunction expansi@sed on this bilinear
form [24, 73], used as a means for projecting functions oméoQNM basis, can
furnish a field representation only over a finite spatial dionidue to exponentially
growing envelopes of QNM basis functions) and under cegaiditions necessary
for completeness, as detailed in [68]. The completenegzepiies of QNMs have
been addressed also in [76, 77].

When applying a QNM expansion method to transmission probleseveral
points are important. First, individual QNMs do not satitifie proper boundary
conditions for the transmittance problem directly. Theoimming wave contribu-
tion in the transmission problem is introduced via time dygiaequations for the
expansion coefficients. Frequency domain equations asgnelot by Fourier trans-
form [72], [73]. Second, as detailed in reference [73], apagsion based solely
on QNMs can represent the internal cavity field up to the baundf the enclosed
region, with exception of a set of measure zero (the boungairnts). This means
that QNM expansions permit convergence in the mean but riotvgise. This sit-
uation arises specifically when the relevant field does ri@fgdahe same outgoing
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wave boundary conditions as the QNMs. Hence, despite thelebemess prop-
erty, in these cases finite, truncated QNM expansions legubdoly converging
field representations. Only after applying certain sumomatules following from
the completeness relations [24, 73] a better convergenghtroe achieved. Still,
adequate approximations of the fields usually require summsaover many basis
modes (although this hardly ever seems to have been obsexpéditly, perhaps
due to comparisons of intensity shapes in place of field gs)illn addition some
caution is necessary when taking into account contribatadra single resonance in
the field representation based on QNM expansion, as empllasizhe reference
[73]. This holds even in a spectral region of isolated, deifieduced transmission
resonances in the bandgap, where one would expect that lordg QNMs with
the real parts of their eigenfrequencies in this frequergjon are sufficient.

Alternative approaches in describing leaky optical stites are reported in
literature and field representations in open 1D cavity $tines are considered, see
[58] and references therein. These methods primarily densjuantum theory
of open systems and do not establish a direct connectionelatiransmittance
(scattering) problems and QNMs for general structure.

As far as we are aware no adequate generalizations to 2D astiBfures are
reported in literature of the above mentioned approachiess. g also true for PBG
(photonic bandgap) structures that we are primarily irsteikin. Some attempts to
use a QNM-like (eigenmode) description for 2D and 3D PBGcétmes are those
related to a scattering-matrix approach as reported ing3Jland [23].

It is the purpose of this paper to establish a quantitatil&ion between the
description of the structure under external excitatiorhvgiven fixed frequency
(the transmittance problem) and the eigenvalue problen®@féiMs, emphasizing
the nature of realistic open structures. Our method speegalto optical defect
structures where high-Q resonances are present insidéntitenic bandgap. As
detailed in this paper, it turns out that the variationalnfoof the transmission
problem offers a resourceful alternative to existing mdthahen applied to de-
scription of the fields and transmission responses of thalifm defect modes
formed inside the photonic bandgap. Our method does noorelgny complete-
ness properties of QNMs nor on a bilinear form for projecfiefls onto the QNM
basis.

The approach proposed in section 2 uses a combination oatidghap field of
the structure (without defect) and only one/few relevant\@8) as a template. By
restricting a specific functional one obtains approximagifor the spectral power
transfer and the optical field related to the transmissioouth the defect struc-
ture. In section 3 we analyze single and multiple defecttesvin finite 1D pe-
riodic structures for both symmetric and non-symmetriefagrrangements. Real
world structures are bound to be finite and this feature idi@ttyp incorporated
by the present approach, in contrast to techniques thabrebytificial periodiza-
tion in Bloch-type analysis and supercell methods that n&mduce nonphysical
and spurious solutions, although usefulness and apdityabi these methods is
proven and well established in practice [7, 9].
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3.2 Theory

We consider problems in 1D for structures with arbitrarycpigise constant refrac-
tive index distributionn(z) within a finite domainz € (0, L) and assume that the
structure is enclosed by two semi infinite domains with camstefractive indices

Nin, Noyt @S depicted in Fig. 1.

Periodic J—Defect

1llout

{ >
0 L X

Figure 3.1: The (defect) grating is a finite periodic strugteonsisting of two
materials with high index.; and low indexny,. The layer thicknesseky, Ly,
are quarter-wavelength for the target wavelength. Optiefdcts are introduced as
changes of layer thicknesses. The grating is surroundeafdgemi-infinite media
of indicesn;,, andn;.

We choose a harmonic time dependence for the electric field
E(z,t) = E(z)e” ™t (3.1)

Therefore, the response of the structure under externéhéra is described by
the Helmholtz equation

O2E(z) + K*(z)E(z) = 0 (3.2)

with a transparent influx boundary condition at the side efdtructure where the
incident wave E;,,. = A;n.e*n?) impinges, and a transparent boundary condition
at the other side

(ax - Z‘kout) E‘x:L = 07 (34)

wherek(z) = w?n?(z)/c?, kin = nipw/c andky, = neuw/c , for given ampli-
tude of the incident wavd;,,. and frequencw. This is the transmittance problem,
where the field distribution inside and outside the striectar given real frequency
w of the incident wave is to be determined. For a solution d?)(8.3),(3.4) the
transmittance is the ratio between the time-averaged Faywmectors in the re-
spective media of incident and output regions. This is tlie t@etween incident
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and transmitted power for time-harmonic electromagnegiclsi

Pout _ %n(mt | E(L) |2

T= = .
Pi %nzn ‘ Eznc(o) ’2

(3.5)

In this context, a transmission resonance can be definedaalathaximum of the
transmittance in a selected frequency region of othenaseilansmittance.
Alternatively, a finite structure can be viewed as an opetegysvith transpar-
ent boundaries which permit leakage of energy to the extedigst as before, the
behavior of the electric field in the interiare (0, L) is governed by the Helmholtz
equation
92Q(z) + K (2)Q(x) = 0 (3.6)

now with outgoing wave boundary conditions

(0:Q(x) + tkinQ(x)) g =0 (3.7)
((%CQ(QC) - ikoth(w));B:L =0. (3.8)

This constitutes an eigenvalue problem for the frequanas the complex
eigenvalue and the electric figlg =) as eigenfunction, called Quasi-Normal Mode.
QNMs appear as discrete infinitely countable set of solstiohthis eigenvalue
problem [24]. They are unbounded functions that blow-upifer +o0o, so they
are essentially different from resonant field solutionsheftransmittance problem.

A finite, but internally periodic structure, i.e. a finite rilayer grating pos-
sesses a QNM spectrum that appears to be related to the Ipestdgeture and res-
onance properties of the transmission / reflection speRearesentations in terms
of QNMs for finite, periodic structures have been investdan [65, 71, 72]. The
positions of complex eigenfrequencies in the complex pkmeearranged in such
way that suggest the presence of bandgap regions in theritéensce response.
Occurrence of the bandgap is to be expected for slices indhmlex frequency
plane where eigenvalues are not present. The edge of thgdyaim these terms
can be estimated by taking real parts of the eigenfrequeratithe ends of sepa-
rated arranged sets of eigenvalues [65, 71, 72]. The inttamuof a defect in an
otherwise periodic multilayer results in isolated QNMskwiihe real parts of their
complex eigenfrequencies inside the bandgap region, aawsinsection 3.

In [65, 72] it has been noticed that the squared modulus of M@lith com-
plex frequencyw, is similar to the field intensity inside the structure for alre
frequencyw ~ Re(wp). This is a good approximation in particular for high-Q
transmission resonances and for QNMs with eigenfrequsneith small imagi-
nary parts. Still, a proper approximation of the field (naeirsity) in the transmis-
sion problem requires many terms in an expansion baseq smeDNMs.

3.2.1 Solutions by transfer-matrix method

We consider multilayer structures with piecewise constafractive index distri-
bution inside the finite spatial domain. Method for solvihg transmittance (and
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eigenvalue) problems is the well known transfer matrix rodtiTMM) [4]. So-
lutions of the Helmholtz equation are given as combinatiohgeft- and right-
travelling waves in thg-th layer

Bj(x) = Aje*io=lim1) 4 Bjemthile=lizy) (3.9)

for x € [l;_1,1;] in a region of constant index; wherek; = n;w/c is the wave
number in this layer. To connect the fields inside all layeesimpose continuity
conditions at the interfaces between consecutive layers,

E;(lj) = Ej+(ly), (3.10)
and
0,E;(I;) = O E; (1), (3.11)

These conditions lead to a system of equations that relaptitades of left-
and right- traveling waves in different layers. They can &gresented in matrix
form. Ordered multiplication of the relevant matrices oectis amplitudes in each
layer of the structure, as well as the amplitudes in the gree and output regions:

Ain mii(w) miz(w) ) ( Aout >
= . 3.12
< Bin ) < ma1(w) maz(w) Bout (3.12)
The transmittance problem with incoming wave from the kefadlved withB,,,; =

0 for specifiedA;,, (amplitude of the incoming wave) with given real frequency
w € R. The amplitude transmission and reflection coefficienteapessed as

Aout

t(w) = A1 (3.13)
Bin

r(w) = A (3.14)

If we choose conditionsl;,, = B,,; = 0, i.e. restrict the exterior solutions
to purely outgoing waves, the eigenvalue problem with ouigavave boundary
conditions is addressed . With these conditions the systeegations can be
nontrivially satisfied if

mi1(w) = 0. (3.15)

Analytic continuation of transfer matrix into the compleampe enables us to find
solutions of (3.15) as complex eigenvalue$23]. By substituting the eigenvalue
into the field representation (3.9) we obtain the correspgndigenfunction, up to
a complex constant. To solve (3.15) we apply a numericatitem procedure of
Newton type. In cases when that method fails to converge datosely spaced
eigenvalues, we use a more powerful technique for detengnicomplex solutions,
based on the argument principle method from complex arsa]g4i.
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Chapter 3. Field representation for 3.2. Theory

3.2.2 Field template and variational formulation for transmittance
problem

We specialize to finite periodic structures that possessinéssion properties with
a bandgap, i.e. with a region of frequencies of very low tnaission. Introduction
of suitable defects leads to a resonant transmission respnside the bandgap of
the underlying periodic structure. We choose a field teregdiat the transmittance
problem as

N
E(x,w) = Emf(l‘,UJ) + Zap(w)Qp(x)v (3.16)
p=1

wherep is an index countingV relevant QNMs . We take the relevant QNMs as
those with the real part of their complex frequency in theegifrequency range.
We show, in terms of the successful application of the tetep(a.16), that the
transmission resonance associated with the defect, apgeaside the bandgap,
is triggered by the "mirror” fieldE,,; of the periodic structure without defect,
which for frequencies inside the bandgap is an almost camlpleeflected wave
with only a weak tail that extends into the interior of theusture.

Note thatF,, ; satisfies correct boundary conditions of the form (3.3) far t
transmittance problem, while a superposition of QNMs caincower the contri-
bution of the incoming wave directly. The incoming field hasbe included by
other means when expansion into the complete set of QNMsnisidered [72].
The inclusion ofE,, s (or some similar object) is essential in our approach as a
means to represent the incoming wave. The mirror field doegxtend far into
the region of the defect where the contributions of the sie@NMs are expected
to be dominant.

Hence, according to template (3.16) the forced resonasp@nse of the struc-
ture appears because the incident wave possesses a reahitgalose to the real
part of the complex eigenfrequency of a suitable QNM sumguoblly the defect
structure.

Obviously (3.16) constitutes only an approximate modelfiertransmittance
problem in specific frequency regions, since neithgy; nor () satisfy all of equa-
tions (3.2)-(3.4). The residuals can be viewed as contabstfrom other QNMs
in the complete set supported [68] by the defect structhia,dre not included in
(3.16). We shall see, however, that the template (3.16xl&@éxcellent approxi-
mations for the configurations of section 3.

To determine the decomposition coefficiemtsn our field template we employ
a variational form of the transmittance problem. The trattamce problem corre-
sponds to the equation and natural boundary conditiorsingrirom the condition
of stationarity of the functional [25]:

L
L(E) = A %Q@Eunﬁ-ﬁmﬂﬁmgdm (3.17)

-%%ﬁ@-%%@%»mmﬂmmm
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Chapter 3. Field representation for 3.2. Theory

If L becomes stationary, i.e. if the first variation bfE) vanishes for arbitrary
variations ofFE, then E satisfies (3.2), (3.3), and (3.4) as natural boundary condi-
tions?.

Restricting the functional (3.17) to our field template &,1 becomes a func-
tion of the coefficients.,, for givenE,,,; and@,. The stationarity conditions then

read:
8[/(&1, az;, ..., (IN)

Oag
The optimal coefficients can be obtained as solutions of eesysf linear equa-
tions

=0,q=1,....,N. (3.18)

A-a= —b, (3.19)

wherea = [a1, as, ...,an]” is the vector of coefficients to be determined. The
components of the matri& = [A,,| v, v and vectob = [by, .., byv]T are

Ay = /O (a Qq0:Qp — 2() Qqu> da (3.20)
i (nnQy(0)Qp(0) + noutczq@)czp(m)
an
<a Emp0:Qq — MEmfc2q> dx (3.21)
?wq 2

(nin B (0)Qq (0) + 120ut B (L)Qq(L)) +2mout AincQq(0).

By solving the system of equations (3.19) for each value efréml frequency
w the decomposition coefficients in the field representatmrttie transmittance
problem are obtained. This enables approximation of thetsgetransmittance
and reflectance and the related field profile. The transnoitasads:

Enf(L) + XN a,(@)Qp(D) |
Ainc

Nout

T(w) = 2oty =
Nin Nin

(3.22)

The field in the region of incidence can be seen as a supdaositincident and
reflected waves ‘ '

E(2) = Aince’™ " 4 1 Ajpee™Hin®, (3.23)
wherer is the amplitude reflection coefficient, related to the reéflece (power
reflection defined as the ratio between the Poynting vecfoeflected and incident

waves)
2

Emp(0) + 5L, ap(w)Qy(0)
Ainc

R=rr"= -1 (3.24)

The functional obtained from (3.17) by settidg,.. = 0, is formally related to the bilinear form
(inner product), in which QNMs are orthogonal [24]. Howewube frequency plays a different role
in both cases: while in the functional (3.17) it is a givengmaeter, the bilinear form of [24] operates
on objects that include the eigenfrequencies as arguments.
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Chapter 3. Field representation for 3.3. Results and Discussion

3.3 Results and Discussion

We specialize to structures with piecewise constant rifdndex distribution
of high ng and low refractive index:;, layers, with quarter-wavelength optical
thicknessed.y, L, at a target frequenayy. High index layers are denoted &,
low-index layers byl and defect layers by. Thus a finite symmetric periodic
structure is represented oy L)Y H, whereN is the number of the layer pairs.
The defects are introduced as changes of the thickness cfisgayers, but the
method can handle defects introduced as changes of re&antices of certain
layers as well. In examples below we use oh)y2 and3 most relevant QNMs
corresponding to single-, double- and triple-cavity dinves.

When single high-Q resonances inside the bandgap are eoedjddecom-
position coefficients depend weakly on the frequency, apan the Lorentzian
approximation (egns. (3.28,3.29)). Then the transmittgmofile can be obtained
analytically for the major part of the bandgap region arotesbnance position. If
the full frequency dependence is includedhp,; as described so far, then com-
putational cost is comparable to direct TMM computationstfe full structure,
but captures adequately the deviation from the Lorentzmmmaximation. Further,
we earn a certain degree of interpretability by being ablelt®erve the interplay
between the QNM basis modes.

3.3.1 Symmetric single cavity structure

We consider a layer arrangeméiif L)* D(LH)*, as an example of a single cavity,
with ng = 3.42 n;, = 1.45, enclosed within two semiinfinite media of the same
refractive indexn;,, = not = 1.0. The defect is introduced as a change of the
thicknessL g in the central layer with high refractive indexy with Lp = 2L y.

The QNM spectrum for the original periodic structure anddinecture with the
defect is depicted in Fig. 2A). The QNM frequencies cleahgw an arrangement
in the complex plane, that reflects the presence of the banddhe transmittance
response presented in Fig. 2B). For the defect structuremgplea frequency in
the QNM spectrum appears in the position of the transmissgpnance in the
bandgap (see Fig. 2A). The field profile of the transmissi@omance and the
profile of the QNM corresponding to the defect structure hsinglar pattern as
depicted in Figs. 2 C) and D). The difference between the QXMteansmission
resonance field is clearly visible in Fig. 2E), arising froifiedent boundary con-
ditions (aroundr = 0, the transmittance field represents inwards traveling wave
and QNM outwards traveling wave), consequently leadingitoedy different be-
havior in the region where the incident wave is present. \kle tae mirror field in
the template as the solution of the transmittance probletheoBtructure without
defect at each frequency in the considered bandgap region.

Approximating both the mode structure and the correct bagndonditions
for the field representation of the TRM (transmission resopamode Fig. 2C ),
using the QNMs and the mirror field in Fig. 2F) leads to an drotlagreement
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Figure 3.2: A) Complex frequencies (eigenvalues) for mlci@nd single cavity
structure B) Transmittance for periodic (dashed) and sieglity structure (con-
tinuous) C) Field pattern for a (defect) frequency at theereaf the bandgap, real
and imaginary parts D) Quasi nhormal mode correspondingda@dmplex eigen-
frequencyw,; E) Comparison of the QNM fav,, (solid line) and the transmission
(defect) field (dotted line) in the region aroumd= 0 where the incoming field is
present. F) Mirror field for the (periodic) structure withalefect foro = Re(way)
G) Field associated with the transmission resonance indfeztistructure obtained
via variational approximation based on mirror field andvefé QNM and com-
pared with TMM reference.

between the approximation obtained form the field templatéthe exact TMM
solution , as can be seen in Fig. 2G).

An acceptable agreement between the approximated fieldgoaofil the TMM
reference (exact solution) is valid in the whole bandgaguescy range. The
field template including an exciting field, together with treriational procedure,
provides a constructive quantitative way to relate QNMs &Rd/s.

The transmittance (3.22) is compared with the TMM referecadeulation, as
shown in Fig. 3A). We observe an excellent agreement betwesrapproxima-
tion and the TMM calculations. Fig. 3B) shows the frequenepehdence of the
decomposition coefficienty, for this structure. The resonant response is clearly
reflected in this dependence, showing that the transmissgmmance is connected
with the excitation of the internal dynamics representedhieyrelevant QNM.
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Figure 3.3: A) Transmittance obtained from field represgmmausing QNMs and
TMM reference B) Decomposition coefficients C) Non-resdmant of the decom-
position coefficient.

A common assumption made in the literature is that the spletttmsmission
for the single resonance situation, as described, is of artwian lineshape. Our
method can analytically justify this assumption. We coesithe contribution of
a single QNM in the field template (3.16). The equation for deeomposition
coefficient then reads

Aa(w) +b=0. (3.25)

After partial integration (3.21) can be given the form
L Tl2 xXr) — Tl2 x
b= /O %Emfcqux (3.26)

with ng being the refractive index distribution for the finite petio (unperturbed)
structure. After partial integration, (3.20) reads

Ln2(x Wy — w
A= (wg — w2) /0 ( )dim + i(qic) (ang(O) + nothg(L)) .

C2
The amplitude transmission coefficient can be approximased

Enp(L) +a(0)Qq(L)  a(w)Qq(L)
Ainc N Ainc ’

) = (3.27)
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assuming that the periodic structure represents a "gootbrhiwith the prop-
erty E,,,s(L) ~ 0. The frequency dependence of the transmission amplituete th
comes from the decomposition coefficient

o) = S0 (3.28)
where
2 /L ng () _2 nQ(x)Emequ
a(w) = 0 - . (3.29)
(w+ wq)/O nc(za:) Qidx + é (ninQ2(0) + 16w Q2 (L))

Term (3.29) is non-resonant in character; in the case of yavamow resonance
w =~ Re(w,) andIm(w,) < Re(w) can be shown to depend weakly on the fre-
quency, see Fig. 3C). Therefore, in the framework of our @yprate model equa-
tion (3.28) represents the Lorentzian like shape as shoviigir8B). This result
agrees with those obtained previously in literature [65,782 26] Here it follows
from a completely different approach and further suppdrésdonclusion that our
method adequately captures the resonance character ocatisenission.

3.3.2 Asymmetric single cavity

Now the internal structure of the previous example is emdosithin two semiin-
finite media of different refractive indices;,, = 1 andn,,; = 5 (as a somewhat
artificial example to emphasize asymmetric nature of thecgire). The QNM
spectrum and transmittance shown in Fig. 4A) and 4B) and th&@rofile in
Fig. 4C) suggest that the difference between the symmetdaaymmetric struc-
tures is reflected in the shift of frequency positions in thmplex plane.

The same qualitative behavior can be seen as in Fig. 2A) ajdi.2B a sin-
gle resonance appears in the bandgap region when the defettoduced, now
with the lower transmittance level (corresponding to tHéeotion at an interface
between media with indices;,, andn.,; [4]). A similar field template as for
the symmetric structure is used. This choice is further cowd by the excellent
agreement between the approximation of the transmittarittetihe TMM refer-
ence calculation shown in Fig. 4D).

3.3.3 Double cavity structure

For this example, we consider a layer arrangenm(@hL)*D(LH)?>LD(LH)?,
where two defects are introduced as changes of thickne$segeos Lp = 2Ly,
wherenp = ny. The refractive index outside the structure is the same ém bo
sides. The values of the refractive indices are the same seciion 3.1. These
defects are forming two FP (Fabry-Perot like) resonanttemsvienclosed by two
identical mirrors and one separating mirror.
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Figure 3.4: A) QNM spectrum and B) Transmittance for the awgtnic periodic
(dashed) and defect (continuous) structure C) QNM for tHedlestructure D)
Transmittance obtained from the field representation ugikgs and the TMM
reference.

The resonant response of the double-cavity structure iesepted by two
complex frequencies in the bandgap region as shown in Fiy. B#e correspond-
ing transmittance plot shows two distinct transmissiommasices in the bandgap
region Fig. 5B). The QNMs for these two defect-induced diigguencies are
shown in Fig 6C) and 6D). Symmetric and skew-symmetric biehaf the eigen-
fields is present, arising form the overall symmetry of thactre.

Fig. 6A) and 6B) shows the decomposition coefficients andagfgroximated
transmittance response that is in excellent agreement Wit reference. The
field template based on the mirror field of the structure withaefects and linear
combination of the two relevant QNMs enables an excelleht fapresentation of
the transmission resonance modes as can be seen from Fjgméb6D).

This example can be considered as a case of strongly couBledvities where
the interaction is sufficient to introduce a significant sapian of the resonance
frequencies. This is reflected in the positions of the def#déM eigenfrequencies
of the defect structure. Our approximation method enabdtls &n accurate field
representation and predicts the proper resonant trarismiss
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Figure 3.5: A) QNM spectrum B) Transmittance for periodi@ afouble cavity
structure; QNMs corresponding to complex frequencies éentiaindgap region C)
ONM for wy, D) QNM for wg.

3.3.4 Multiple cavity structure with flat-top narrow-band t ransmis-
sion

As last example we choose an asymmetric triple cavity stractwith layer ar-
rangement coded a§/ L)*L(HL)’L(HL)’L(HL)*, ny = 2.1, ny = 1.45,
Nin = Nowt = 1.52, Ly, Lr-quarter-wavelength [6]. This structure introduces
three complex eigenfrequencies in the bandgap region,aesim Fig. 7A). The
important feature is that it provides a narrow-band flatttapsmission inside the
bandgap region as can be seen in Fig 7B). The closely spagedfiEquencies
and the corresponding QNMs are shown in Fig. 8. The proxiwifitthe complex
frequencies reflects weak coupling between the three ohaiiFP cavities formed
by the defects.

Fig. 9 shows the decomposition coefficients and the appm@techtransmit-
tance (compared with the TMM reference). The close proyinaftthe eigenfre-
quencies is reflected in the substantial overlapping ofriaguiency regions where
all three decomposition coefficients contribute. The fiedttgrn in this region is
clearly produced by the combination of three relevant QN®bviously all three
QNMs play a significant role over the whole transmission bark approximated
field profiles for the transmission pass-band and the imnediandgap region
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Figure 3.6: A) Decomposition coefficients. B) Transmit@ambtained from the
field representation using QNMs (dashed) and TMM referenoatinuous). C)

and D): approximated field obtained from the field represemtausing QNMs

(marker) and TMM reference for the frequency of transmissigsonance (solid
line) forw = Re(wr) and)w = Re(wg).

agree well with the TMM reference, as shown in Fig. 10.

We wish to point out that direct TMM calculations are not ahie for esti-
mating the resonance origin of the transmission band.Asme of the methods
used in literature, that estimate complex eigenfrequenigciematching the trans-
mittance spectrum to the Lorentzian lineshape functiorsemtimate eigenfields
through association of the TRMs with the QNMs, see [83] affieremces therein,
are not efficient in this case. Neither can estimates of tineptex eigenfrequen-
cies and QNMs based on FDTD (finite difference time domaimusations deal
easily with this type of structures with flat-top transmissisee [7] and references
therein.

In contrast our model permits to observe directly the releeeof the individual
QNMs at different frequencies (i.e. the magnitude of theamgon coefficients

ap).
3.4 Conclusions

We proposed a constructive way of connecting a quasi-nonmagle (eigenmode)
description with transmission resonance properties facalpdefect microcavities
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Figure 3.7: A) ONM eigenfrequencies for the triple-defettisture and periodic
(unperturbed) structure, and B) transmittance.

in 1D multilayer structures. The approach is meant spedifita approximations
of the defect induced transmission modes existing in thelgp@m of otherwise
periodical structures.

The field representation using a mirror field and the mosvagieQNMs en-
ables very accurate field representations for field profiléké transmittance prob-
lem. The approximated spectral transmittance agreeslentiglwith the TMM
reference. We emphasize the open and finite nature of thetugtes by directly
characterizing resonance properties via an investigatiadhe quasi-normal mode
spectrum.

Numerical examples suggest that the method is valid forleiagd multiple
cavity structures in both symmetric and nonsymmetric layeangements and both
weak and strong couplings between defects. Moreover, otliadallows to ex-
amine directly the resonance nature of the transmissiqrorse in cases where
it is very hard to establish this from exact solutions of t@$mission problem,
such as provided by the TMM method.

The approach quantifies directly the physical viewpointexetthe defect cavi-
ties are regarded as externally forced oscillators. The fegiresentations obtained
using QNMs have a better foundation in the physics and natfitbe realistic,
finite structures, when compared with methods that assumesdic boundary
conditions for the structure.

We believe that our approach can be generalized to 2D andr@Elgtes as an
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Figure 3.8: A) Complex eigenfrequencies of defects indu@atMs in the triple-
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Figure 3.9: Decomposition coefficients for the field repnégton, corresponding
to the QNMs associated withy, wys, wr (left) and the transmittance obtained
from the field representation using QNMs and TMM referenigh}.

acceptable characterization for both fields and responsaifuns. Provided that
suitable QNM basis fields can be made available by analydicalmerical means,
generalizations could be based on the functional repratens of the frequency
domain Maxwell equations for higher dimensions [84],[85].
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Chapter 4

Coupled optical defect
microcavities in 1D photonic
crystals and quasi-normal modes

Abstract?!

We analyze coupled optical defect cavities realized ingfioite-dimensional Pho-
tonic Crystals. Viewing these as open systems where waggseamnitted to leave
the structures, one obtains eigenvalue problems for comipbguencies (eigen-
values) and Quasi-Normal-Modes (eigenfunctions). Sidgfect structures (pho-
tonic crystal atoms) can be viewed as elementary buildirgkd for multiple-
defect structures (photonic crystal molecules) with maseglex functionality.
The QNM description links the resonant behavior of indigidBC atoms to the
properties of the PC molecules via eigenfrequency siittiA variational prin-
ciple for QNMs permits to predict the eigenfield and the caxm@igenvalues in
PC molecules starting with a field template incorporating tielevant QNMs of
the PC atoms. Both the field representation and the resorzettisl transmis-
sion close to these resonances are obtained from a varg@tifmmmulation of the
transmittance problem using a template with the most reile@NMs. The method
applies to both symmetric and nonsymmetric single and pheiltiavity structures
with weak or strong coupling between the defects.

1This chapter is adapted from: M. Maksimovic, M. Hammer, Eh Groesen,Coupled optical
defect microcavities in 1D photonic crystals and quasimal modesPhotonics West 2008 / OPTO
2008, Integrated Optics: Devices, Materials, and TechgietoXIl, Proceedings of SPIE,Vol. 6896,
2008
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Chapter 4. Coupled optical defect 4.1. Introduction

4.1 Introduction

Photonic Crystal (PC) based devices attracted much infertse past two decades
concerning both fundamental and applied aspects. Plemhodgling and compu-
tational techniques are applied and well established [B].9We consider 1-D
PC structures that can provide qualitative insight and mdaninterpreting the
physics of higher dimensional structures. More specificalle consider planar
layered inhomogeneous media with piecewise constantctefeandex as the tra-
ditional model of 1-D PCs. Although they belong to the fieldhafltilayer optics
[4], an old and well explored field, a novel way of modeling sbelevices has
certain theoretical and practical interest for itself.

The open and finite nature of realistic structures is acolkesby directly char-
acterizing resonance properties via an investigationefjtrasi-normal modes and
associated complex frequencies. Quasi-normal modes (QiMd®igenfunctions
associated with the complex eigenfrequencies arising fitteneigenvalue prob-
lem for outgoing waves [24]. The real parts of the complexeerfiequencies are
connected with the transmission resonance frequencieal fltaxima of the trans-
mission) and the imaginary parts with the Q-factors (ondiitth) of the resonant
transmission profile. Properties of the QNMs and related tRftsires have been
addressed for 1-D PC structures in [65, 72, 77], while for PO structures the
theory is by far less often addressed and developed, withgartial results [81].

We specialize to finite PC structures with suitable defectstherwise peri-
odic arrangements. These defects are forming Fabry-Pauities enclosed by
and separated by leaky mirrors that allow the exchange ofgheetween cavities.
These Coupled Optical Microcavites (CMC) already attrdctsearch interest as
they provide means for the implementation of optical filteesonators, delay lines
and other devices in both passive and active structures6[@B® 88, 89]. Refer-
ence method for analyzing one-dimensional structures raiasfer Matrix Method
(TMM) [4]. A description in the framework of different cougl mode theory ap-
proaches has been a traditional way of analysis [84, 90, 21,88 far as inter-
acting optical waveguides (i.e., mostly systems with weltfmed optical states)
are concerned. However, an analysis of open, leaky stegtdirectly based on
QNMs seems to be missing. This paper considers some pdiesibior the direct
characterization of open cavities in 1-D PC structuresgusinly the most relevant
QNMs.

Composite CMC structures can be viewed as being formed fiopler single
cavity structures or some other elementary building blogkss decomposition is
usually quite arbitrary and can be done in many differentsiaya given structure.
However, when the individual modes are well localized in tngnity of their
respective cavities, a field template for the compositectire can be based on
the superposition of the individual cavity modes. In litera the basic structures
are sometimes called “photonic crystal atoms” which aresfeenentary building
blocks for more complex “photonic crystal molecules”. Theykdea is that by
combining PC atoms with known properties more complex PCemoés can be
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obtained with engineered properties. Based on QNMs andiatiearal principle,
our procedure enables the derivation of the propertieseottimposite structures
in a constructive way using the known properties of the lngdlocks and certain
design rules for the composite structure.

In the context of CMCs, we address the splitting of eigenfeggies by using
a variational principle together with the related QNMs aof thdividual cavities.
QNMs of the composite structure (super-modes) can be appated by this ap-
proach. Further, we use the characterization of the CMGxring of quasi-normal
modes to describe approximately the resonant response éatamal excitation
in the frequency domain and the related field profiles. Thea@mate frequency
domain description follows from a suitable variationalnmation [25] for the
transmission problem, using the most relevant QNMs in éistdabg appropriate
field templates [93].

4.2 Theory

We consider 1-D optical structures in the frequency domauteu external excita-
tion. The optical fielde () excited by the external influf;,,. = A, e'("inw/)7,
with w € R and A4;,,. given, for vacuum speed of liglt satisfies the Helmholtz
equation

2
O2E + “n’(2) E =0, (4.1)
C
on an intervak: € [L, R], and transparent influx boundary conditions
(axE n #nnE> — 2% 0 Aine (axE - #noutE) —0 (4.2
C z=L C C =R

at the boundaries = L, R. The exterior regions < L andz > R are assumed to
be homogeneous with refractive indices, andn,.;, respectively. For structures
with piecewise constant refractive index an exact solutian be obtained via a
standard and well known transfer matrix method [4]; a brigfl@nation is given
in appendix 4.5. This serves as reference for the approgimetdels discussed
below.

Properties of passive, open optical structures with enexghange between
the constitutive elements and the environment are capadeduately by a formu-
lation of an eigenvalue problem for complex frequencies. mitdistructure can
be viewed as an open system with transparent boundarie$ whitnit the leak-
age of energy to the exterior, see Figure 4.1 A). The elefigid in the interior
z € (L, R) satisfies the Helmholtz equation:

2 w? 2
0:Q + C—Zn ()@ =0 (4.3)

with outgoing wave boundary conditions

(amQ + z%an) =0, and (axQ _ i%noth> =0 @4

xr= r=
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This constitutes an eigenvalue problem for the frequeneg the complex eigen-
value and the field profil€)(z) as eigenfunction (Quasi-Normal Mode) [24, 26,
65, 72]. The eigenvalue problem is nonlinear because theneddue appears in
the boundary conditions explicitly [26]. QNMs can be useddbve the initial-
value problem of energy leakage out of a given open structline applicability
of QNMs for solutions of the transmission problems with giviaflux relies on
specific pseudo-orthogonality and completeness propasti®@NMs when used as
a basis set for an eigenfunction expansion [65, 72].

A variational formulation of the QNM eigenvalue problem danbased on the
functional [25]

R 2
Lo(Q) = % /L ((amcg)2 - ‘;’—an(m)qﬁ) d (4.5)
- % (ninQ2|x:L + noth2|x=R) .

If £, becomes stationary, i.e. if the first variation 6f(Q) vanishes for arbi-
trary variations ofQ, then() satisfies equation (4.3) with equations (4.4) as natural
boundary conditions. The value of the functional (4.5) wiith proper eigenfunc-
tion/ eigenvalue paifw, Q) inserted is zero, i.e.

£.(Q) =0. (4.6)

This property can be shown analytically by computing thdiglderivative of the
first term in the (4.5).

We specialize to the analysis of optical defect modes &xjsti the bandgap
of the underlying periodic structure. To avoid using thd fdt of QNMs and
the completeness properties of QNMs to determine apprdnsof the optical
transmission and of the related field profiles, we apply aatianal principle and
a specific field template that consists of QNMs associatey with the optical
defects. Details of this procedure can be found in [93] arabipendix 4.6.

4.2.1 Coupled cavities

We start with the QNMs$w1, Q1), . .., (wn, @) for refractive index distributions
ni(z),...,ny(x) of simpler (not necessarily single cavity) structures. u8ohs
of the eigenvalue problem for the composite structure asaraed to be well ap-
proximated by linear combinations of the QNMs belonginghe simpler struc-
tures. Therefore, we choose the field template

N
Q=> ayQp (4.7)
p=1

which represents a restrictiofy,,(Q) — Ly (a1,...,an) of the solutions of the
original problem. Stationarity of the functional (4.5)risfiorms on the restricted
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Figure 4.1: The coupled optical defect structures consitiér this paper are finite
periodic multilayer structures consisting of two materiadith high indexny and

low indexny. The layer thicknesses;, d;, are chosen to be quarter-wavelength
for the target wavelength (related to a reference frequeggyOptical defects are
introduced as changes of the layer thicknesses or refeaatilices in the otherwise
periodic sequence. The whole structure is enclosed by twu-isdinite media of
indicesn;,, andn,;. A composite multiple defect structure A) can be decomposed
into usually simpler single defect structures B) and C).

set to the conditions

L,
gT(al,...,ap,...,aN):O, for p=1,..., N, (4.8)
P

that can be written as an algebraic quadratic eigenvaluagmo[94]
(WM +wN+P)a=0 (4.9)

for the complex eigenfrequencies of the composite system. The eigenvectors
a = [ai,...,ay]T are the unknown coefficients in the linear superpositioi)(4.
of the single cavity QNMs. The elements of the matribés= [Mjx]nvxn, N =

[Nik]nxn, P = [Pr]nxn are

1 (R,
My = L / n?(2)QuQudr,
cJL
;
le = _E(nianQk’x:L+nothle‘x:R)a (410)
R
Py - / 0,0,0,Qrda.
L

Equation (4.9) enables the approximate solution of thene@ee problem for the
composite structure. It directly links the resonance bigladf the individual con-
stitutive elements (PC atoms) to the resonance properttiesoe complex struc-
tures (PC molecules), i.e. describes the eigenfrequendyirgp Both resonant
frequencies and the related Q-factors can be estimatediehds of the external
and internal confinement (type, length and strength of thiertms” in the struc-
ture) or perturbations of various parameters can be dyracihlyzed.

Usually the decompositions of the composite structurethe precise choice
of the elements),, in (4.7) is to some degree arbitrary. Supporting argumedts c
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be based on results from direct computations, on physitaition, but also on the
following observation. For field§); with associated frequency; and refractive
indexn; that satisfy (4.3), (4.4), equation (4.9) can be written as

Sa=0, (4.12)
where
R w2n2 x) — (,()2712 T
Su = /L D0 Qus 1
4 M (nianQk‘sz + nothle’l’:R) '

If the trial field includes the exact solution for the compesstructure with the
propertyw = w; then (4.11) is satisfied. Expression (4.12) suggests thaethac-
tive index distributionsz; of the simpler structures in the decomposition should be
chosen as close as possible to the exact structure (re&actiexn).

4.2.2 First order perturbation correction for complex eigenfrequen-
cies

We look for corrections of the complex eigenfrequenciesafgiven structure when
small, localized perturbations of the permittivity are g@at. A first order pertur-
bation correction for the complex eigenvalue can be obthlmeusing (4.5) and

a known QNM eigenpaifwy, Qo) of the unperturbed problem with refractive in-
dex distributionng(x). It is reasonable to assume that a small perturbation of the
original structure does neither change substantialitypibstion of the complex
eigenfrequencies in the complex plane nor the shape of thespmnding QNMs.

We consider a permittivity perturbation in the form

n?(z) = nd(x) + n%(m) (4.13)

For small (in effect) perturbationsf, we look for a first order correctiow; to the
eigenfrequencyw = wy + w1. Variational accuracy guarantees that the eigenfre-
quency is determined up to first order if the eigenfunctioknewn up to zeroth
order (solution of the unperturbed structure). Upon resirg (4.5) to the zeroth
order field approximatiorC,,(aQo) — L(a), the stationarity condition on the re-

stricted set
oL

Oa
gives an equation for the eigenfrequency correction. Keepnly the first order
terms inw; and using the property (4.6) satisfied by the eigenfair ()) of the
unperturbed problem, the correction to the complex eigepfency reads

(a) =0 (4.14)

R
2 /L ”?z(fﬂ)Q(Q)dl"

_“

wi=—g——p Z, (4.15)
26_;) /L ng(:ﬂ)Q%daz + E (nan(Z)LB:L + nothgLv:R)
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Obviously this procedure is closely related to the theory4®.1); it may be
viewed as a “coupled mode theory” with only one mode in theplate (4.7). Itis
possible to extend this method and to derive both correstiothe eigenvalue and
to the eigenfunction up to arbitrary order using a varialgrinciple. An iterative
procedure for higher order corrections will be reporte@wlsere.

4.3 Results and Discussion

A series of examples of CMCs serves to validate the descmibetthods. First,
we apply the variational principle of Section 4.2.1 for apfimating supermodes
in a double-cavity structure using known QNMs of the indiati single cavities.
Second, the variational form of first order perturbatiorotiyfor QNMs (Section
4.2.2) is used to analyze shifts of cavity resonances sidajeo local perturbations
of the refractive index. Third, the method of appendix 4.@pplied to estimate
the transmission on the basis of a few, most relevant QNMsallyi we con-
sider multiple-defect structures designed to operate ekvead in strong coupling
regimes. Also here our variational approximation methokdithe resonant trans-
mission to the underlying QNMs.

4.3.1 Double cavity structure

Consider a layer arrangement coded H4.)' D(LH)M1, whereM; = 4 is the
number of layer pairs in two mirrors that enclose a singletgawith nyg = 3.42,
n;, = 1.0, between two semi-infinite media of the same refractivexndg =
newt = 1.0. The defect is introduced as a central layer of thickngss= 2dy
with high refractive indexap = ngy. A complex QNM eigenfrequency associ-
ated with the defect is present in the bandgap region of tlagerkperiodic struc-
ture. This eigenfrequency has an imaginary part that isabgeders of magnitude
smaller (absolute value) than all other eigenfrequenaidisa QNM spectrum [93].
Usually this is a sign of a strong localization of the fiel@. ifor efficient energy
trapping in the vicinity of the defect.

The combinatiol 7 L) D(LH)M2 L D(LH)M1 of two of these single cavity
structures constitutes a multilayer arrangement with tefects and three mirrors
(two enclosing mirrors of “length’A;, one separating mirror of lengtt/;). The
defects form two Fabry-Perot-like resonant cavities with torresponding QNMs
and eigenfrequencies, see Figure 4.2 A). These eigenimemsecorrespond to
two transmission resonances (Figure 4.2 B) ). The resoeapbnse of the double-
cavity structure (the PC molecule) can be viewed as beingrgésd through eigen-
frequency splitting from the resonance of the single cesifthe PC atoms). By
changing the numbev/, of pairs in the separating mirror one can control the inter-
action strength between the two cavities, where the reldgistance of the complex
frequencies reflects weak or strong coupling. If the sejmaras small, the over-
lap of the individual QNMs is substantial, which results isteong separation of
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eigenfrequencies. Increasing the separation leads te elgenfrequencies and re-
sults in the formation of a transmission pass-band. Withld feemplate (4.7) that
consists of a linear superposition of the two QNMs assaodiatieh the individual
left and right cavities, the procedure of Section 4.2.1 pisrthe estimation of both
eigenfrequencies and QNMs of the PC molecule. AccordinggorE 4.2 this is an
excellent approximation even for quite moderate cavityasgiionsi/, with rather
strong interaction.

In contrast to the composite structure, the permittivitgfipes that constitute
the PC atoms do not show a particular symmetry (cf. Figure #iénce the QNMs
associated with the individual cavities do not exhibit aciglesymmetry. When
the decomposition is performed properly, however, themmetric and skew-
symmetric linear combinations approximate the symmetnid skew-symmetric
supermodes of the composite structure, see Figure 4.2 pand

_gx10° A) B)
> M=8 o M,=7 o M=6 . M,=5 —M,=8 —M,=7 —M,=6 —M,=5
-3.2 1r
5
o _ R
% 3-4 ® =] RAAR =] '6
E -36 %
—38l (x) - eigenfreq. approx. =
4 09999 1  1.0001 09999 1  1.0001
Re (W) woy,
C) D)
0.5 1 o5t ‘
g 0 - e g 0 - N —_
& &
-0.5 | ‘ | -05¢
2 4 6 8 0 2 4 6
X[um] X[um]

Figure 4.2: A): complex eigenfrequenciedor the double cavity structure, direct
computations and CMT approximations for different lengtlhs of the separation
region; B): transmittance, direct TMM calculation; C), MNMs (supermodes)
for the double cavity structure withl, = 5, direct computation (continuous) and
CMT approximation (dashed).

Further, the variational method of appendix 4.6 allows tarahterize the con-
tributions of individual QNMs to the spectral transmissidrigure 4.3 compares
two different settings: The template (4.21) for the trarssiain field can be based
either on the two (exact) supermodes of the PC molecule, dh@®QNMs sup-
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Figure 4.3: Transmittance (large axes, A), D); direct TMNgmitations and CMT
model, superimposed curves) and coefficiengsfor approximations (appendix
4.6) to the transmission problem, if the template (4.21)uitkes either the two
exact supermodes of the composite structure (left insets B)or alternatively the
ONMs associated with the individual left and right cavit{eght insets C), F)).
The upper plots A), B), C) carrespond to a moderate cavitaisgionils = 5, the
lower plots D), E), F) to a setting withls = 8, i.e. with weaker interaction.

ported by the PC atoms. In both cases the resulting appraxinsafor the trans-
mission are indistinguishable (on the scale of the figu@nfthe TMM reference.
Especially interesting is the weak coupling regime, whiaeedirect computation
based on the TMM method can not easily explain the resonaaracter of the
transmission band. However, examination of the relevaniptex eigenvalues,
of the QNMs, and of the expansion coefficients describes teigip the resonant
character of the transmission band.

Perturbation of the double cavity structure

The perturbation theory from Section 4.2.2 is applied toya@aeigenfrequency
shifts due to small local perturbations of the cavity refikecindex. Below we look
at both symmetric and asymmetric perturbations of the sytmeneriginal struc-
ture. The perturbative correction for QNMs estimates reably, in first order,
both real and imaginary parts of the complex eigenfreq@sncthis can be traced
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further to changes of the transmission, i.e. to the positfmesonance frequencies
and the related Q-factors. Figure 4.4 introduces the spexgfifiguration.

Local cavity
perturbation

Refractive index

v

Figure 4.4: Perturbation of a CMC by localized refractiveldr changes. The
double cavity structure is encoded @L)*H(2L)(HL)*H(2L)(HL)*H. The
individual layers with alternately high{) and low refractive indexl{) are quarter-
wavelength withny = 1.5, np, = 1, niyp = nowe = 1. Two low index layers
with larger half-wavelength thicknegs, form the two defects. Perturbations are
introduced as local changes of the permittivify = n2 (1 + p) in the middle of
the defect layer with a thickness &f = dp /5 andp € (0,0.05).

First we consider an asymmetric perturbation, where thecgve index of
only one of the defects is raised locally. According to Fagdt5, this leads not
only to shifts in the positions of the eigenfrequencies ((A)Jt also to dramatic
changes of the transmission response (B)). The perturbatizections (4.15) are
obtained here with the QNMs (supermodes) of the original musite structure.
Figure 4.5 A) shows the paths of the eigenfrequencies in dneptex plane for
varying strengthp of the perturbation, where the influence of the refractiaein
change has been evaluated by expression (4.15) on the otheatmal) for compari-
son, by direct TMM calculations on the other hand. As expkdige straight lines
given by the first order perturbational expression are tatigeto the reference
paths. In this case the range of a reasonable approximatehis rather limited,
because the perturbation destroys the overall symmetheadstructure.

If, in contrast, both cavities are perturbed in a symmeitriay, the results of
the perturbational procedure are accurate over a muchrlaagge of perturba-
tion strengths, as seen in Figure 4.5 C). Now the eigenfomstof the perturbed
structured retain their symmetry, i.e. the assumption tt@iQNM of the original
structure forms an acceptable approximation to the pextldmonfiguration is ap-
parently better justified. For both the symmetric and theramgtric perturbation,
the variational procedure of appendix 4.6, in Figure 4.51®) B) applied with the
supermodes of the perturbed composite structure in thelé¢emives accurate
results for the spectral transmission through the doubtiycstructure.
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Figure 4.5: A), C): complex eigenfrequencies for the douddeity structure of
Figure 4.4, direct computations and first order perturlpettieory approximations;
B), D): spectral transmittance, QNM approximation (apmertl6) based on ex-
act QNM supermodes, and TMM reference; asymmetric (A), Bld symmetric
perturbations (C), D) ).

For the asymmetrically changed double cavity configuratibRigure 4.5 A)
we observed that the perturbational expression (4.15xtyr@ser- or underesti-
mated the QNM eigenvalue correction. This was attributethéfact that the
underlying field template could not respond to the brokenragtny of the per-
turbed structure. It is thus intriguing to try a modified tdate that combines
separate QNMs of the two individual cavities, i.e. to applg theory of Section
4.2.1. Necessarily with this procedure one encounterstainegrror already for
the approximation of the QNM supermode eigenfrequencieheiunperturbed,
symmetric structure (observe that this concerns a contiguravith relatively low
refractive index contrast and strong interaction). Saiticording to Figure 4.6 A),
the eigenfrequency shifts predicted by the CMT formaliswecdhe whole range
of perturbation strengths considered here with reasorzaioleracy, at least as far as
real parts are concerned. Plots B) and C) of Figure 4.6 shatttib eigenfunctions
of the perturbed structure are indeed not even approxignagehmetric.

4.3.2 Multiple cavity structures

First, we look at the multiple cavity structure (the PC maleg that is formed by
repeating the former single cavity structure (the PC ataropaling to the follow-
ing design rule. Repetition of the unit cdiC A; = (HL)M1(2H)(LH)M, here

with M; = 4, generates the molecul®C A4, L] ;, whereJ is the number of PC
atoms. The refractive indices are the same as given in Figdréor the previous
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Figure 4.6: A): complex eigenfrequencies for the doublatgastructure of Fig-
ure 4.4, direct TMM computations and CMT approximationshie case of asym-
metric perturbations. B), C), for or a perturbation stréngt 0.05: QNM profiles
obtained with CMT (dashed lines) and direct computatiomifcoious).

example. The plots A) and B) in Figure 4.7 show the compleguUescies and the
resonant transmission for PC molecules with= 2 and.J = 3, respectively. Ob-
viously these PC molecules operate in the weak couplingnegas is reflected in
the proximity of the eigenfrequencies (A)) and in the cheeastic transmission
pass-band (B)). The transmission, estimated accordingetoetcipes of appendix
4.6 with directly computed QNM supermodes of the moleciden ithe excellent
agreement with the TMM reference. The number of relevant @Nivthe com-

posite structure is equal to the number of PC atoms; modditaf this number
permit a constructive tailoring of the transmission paaseb For additional tuning
of the transmission that might be of interest, such as ripplgpression (to opti-
mize for a flat-top response), one could adjust the stremgtimber of layer pairs)
of the mirrors, or add a certain degree of asymmetry to thé diesign [93, 6].

Second, we consider the molecule formed by repeating thecehiPC Ay =
(HLYM(2H)(LH)M2 L(2H)(LH)M, with M; = 4 and M, = 2 (a strongly
coupled double cavity structure), coded BE' A, L] ;. In Figure 4.7 the complex
eigenfrequencies (C)) and the spectral transmission (B9 shown. This pro-
cedure represents the design of a multiple channeled filtervarrow bandpass
transmission. By proper adjustment of the inter cavity ssjan (i.e. of the cou-
pling strength), the relative position of the transmissibannels can be controlled.
Additional unit cells contribute to the eigenfrequencyitipg in such a way that
the split eigenfrequencies are close. Therefore, no addititransmission bands
appear but the width of the transmission pass-bands isweadro

Finally, a combination of the PC atoni3C'A; and PC A5 leads to an even
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Figure 4.7: A), B): complex eigenfrequencies and transions®or weakly coupled

multiple cavity structure$PC Ay, L];; C), D): frequencies and transmission for
PC molecule§PC Aq, L) ; formed by repeating a double cavity unit cell in the
strong coupling regime.

more complex composite structure. The PC molecule is giwethé sequence
PCM = [PCAy, L, PCAs, L, PCA,]. Figure 4.8 shows eigenfrequencies (A))
and the corresponding QNMs (B)-E)). The individual conttibns of each atom
to the supermode profiles of the molecule are clearly visifilee eigenfrequen-
cieswy andws are the product of a weak coupling between the até16sA; (the
single cavity structures), according to the shape of theesppnding QNMs (D),
E)). The eigenfrequencies; andw, originate fromPC A, and are affected by
PC A; only in the form of an increased confinement (i.e. a lower kibswalue of
the imaginary parts of the eigenfrequencies). The trarmaridor the composite
structure exhibits a characteristic combination of bothstitutive atoms. The high
transmittance peaks are caused by the resonances astegtat®C A,, while the
transmission resonances®B’ A, are modulated (here they are suppressed) by the
presence ofPC' A,. In this case, light can not establish an efficient propagati
path from the leftPC A, to the right one, because the frequencies supported by
PC A, are inside the attenuation region B A, see Figure 4.7.
We like to emphasize here that the QNM analysis can be veffylufee an in-
terpretation of results and for an accurate prediction @filicome of transmission
experiments, as shown in the previous paragraphs. Herapfireach establishes
a sound foundation of the concept of photonic crystal mdés;uhat cannot be
provided easily by direct TMM solutions.
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Figure 4.8: A). complex eigenfrequencies, — w, of the PC molecule
[PCA;, L, PCA,, L, PCA;| formed by combination of the single and double cav-
ity atoms of Figure 4.7. The insets show the corresponding/l®Nvherew, ws,

w3, andw, are related to profiles B), D), E), and C). F): spectral tragsion for
the composite structure.

4.4 Conclusions

In this paper we consider the open and finite nature of a spetifss of PC struc-
tures by directly characterizing their resonance proggniia an investigation of
the quasi-normal mode spectrum. A variational principle@i&NMs allows to ap-
proximate the eigenfrequencies and QNMs of composite plaltavity structures
by eigenfrequencies and QNMs of simpler structures. Fgrtheonstructive, re-
cently developed way [93] of relating a quasi-normal modscdption to trans-
mission properties of optical defect microcavities in 1DsAE€ applied. Detailed
remarks about alternative existing methods can be foun@3h [

We specialize to defect structures that support transamisabdes in the bandgap
of otherwise periodical structures. Numerical examples\sthat the method is ap-
plicable for both symmetric and nonsymmetric layer arramgeats and both weak
and strong coupling between defects.

A form of coupled mode theory for finite, open 1-D PC strucsligeproposed,
that uses directly the most relevant QNMs. Closely relaedexpression for a first
order perturbation correction of the complex eigenfregiesnis derived by means
of variational restriction. In contrast to other methodatthse different types of
basis fields and rely either on a tight-binding approximatigé, 89] and/or on
supercell methods [87, 88], with our approach the finite reatif the individual
building blocks in the composite structure is fully respeict

Further, we analyzed a series of characteristic examplesauitiple cavity
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structures and were able to point out characteristic featirthe composite struc-
tures as originating from simpler structures. The resultgest that the notion of
the photonic crystal molecules can be founded on the QNMyaisahs considered
here. Together with our variational approximation methbd, QNM analysis of-
fers a resourceful method for the interpretation of compleznomena associated
with the resonance properties in 1-D PC structures.

Provided that suitable QNM basis fields can be made availabémalytical or
numerical means, possible generalizations to 2D and 3@tates could be based
on suitable functional representations of the frequeneyalo Maxwell equations
for higher dimensions [85].

4.5 Appendix A: Transfer matrix method

For structures with piecewise constant refractive indestrithution inside a fi-
nite spatial domain a method for solving both the transmittaand eigenvalue
problems is the well known transfer matrix method (TMM) [§olutions of the
Helmholtz equation are given as combinations of left- agttriraveling waves in
the j-th layer

Ej(z) = Ajetti@=li-1) 4 Bie=tki(@=li-1) (4.16)

for x € [l;_1,1;] in a region of constant index; wherek; = n;w/c is the wave
number in this layer. To connect the fields inside all layeesinvpose continuity
conditions at the interfaces:

Ej(l;) = Ej1(ly),and 0, E;(1;) = 0z Ej41(15). (4.17)

These conditions lead to a system of equations that can beseged in matrix
form. Ordered multiplication of the relevant matrices cectis amplitudes in each
layer of the structure, as well as the amplitudes in the gmde and output regions:

Ain mi(w) miz(w) > < Aout >
= . 4.18
( Bin > ( map(w) maoz(w) Bout (4.18)
The transmittance problem with incoming wave from the keftalved withB,,,; =

0 for specifiedA;, (amplitude of the incoming wave) with given real frequency
w € R. The amplitude transmission and reflection coefficienteapeessed as

tw) = %, and r(w) = ﬁf”. (4.19)

If we choose conditionsd;,, = By, = 0, i.e. restrict the exterior solutions to
purely outgoing waves, the eigenvalue problem with outgewave boundary con-
ditions is addressed. With these conditions the systemuat@ns can be nontriv-
ially satisfied if

mi1(w) = 0. (4.20)
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Analytic continuation of the transfer matrix into the comlplane enables us to
find solutions of (4.20) as complex eigenvaluef?3]. By substituting the eigen-
value into the field representation (4.16) we obtain theesmonding eigenfunc-
tion, up to a complex constant. To solve (3.15) we apply a migaleiteration
procedure of Newton type [61]. In cases when that method faikonverge due
to closely spaced eigenvalues, we use a more powerful tahrior determining
complex solutions, based on the argument principle mettoyd Eomplex analysis
[82].

4.6 Appendix B: Variational QNM model of the transmis-
sion problem

We specialize to finite periodic structures that possessinésion properties with
a bandgap, i.e. with a region of frequencies of very low tnaission. Breaking the
periodicity of the structure can give rise to defect resaearinside the bandgap.
Approximation of the spectral transmission and of the aased field profiles for
these resonances is the aim of our analysis. Therefore, aaseha field template
for the transmittance problem as

N
E(z,w) ~ Epf(z,w) + Z ap(w)Qp(x), (4.21)
p=1

wherep is an index countingV relevant QNMs, i.e. those with the real part of
their complex frequency in the given frequency range. Wewslgbin terms of
the successful application of the template (4.21), thatrdresmission resonances
associated with the defects are excited by the “mirror” figjd, of the periodic
structure without defect, which for frequencies inside tiamdgap is an almost
completely reflected wave with only a weak tail that extents the interior of
the structure. Therefore, this template (4.21) quantifiesibtion of a forced reso-
nance response that appears because the incident wavegessaeeal frequency
close to the real part of the complex eigenfrequency of abklatQNM supported
by the defect structure.

This is only an approximate model for the transmittance lgrobin specific
frequency regions, since neithér,,  nor  satisfy all of equations (3.2)-(3.3).
The residuals can be viewed as contributions from other QNMNise complete set
supported by the defect structure, that are not included.ilj. To find the de-
composition coefficients,, we use a variational form of the transmittance problem
[25]. The transmittance problem corresponds to the equaiia natural boundary
conditions, arising from the condition of stationarity bétfunctional

1 [ s w? 2
- —22“ (Rin B aer, + ot B2|oer) + 20 in AineElaer.
C C
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If £ becomes stationary, i.e. if the first variation 6(E) vanishes for arbitrary
variations ofE, then F satisfies (3.2), and (3.3),(3.4) as natural boundary condi-
tions. Restricting the functional (4.22) to the field temelé.21),L becomes a
function of the coefficients,,, for given E,,, and@,. The stationarity conditions
then read

oL
—(a1,a2,...,any) =0, ¢g=1,...,N. (4.23)
Oag
The optimal decomposition coefficients are obtained agisokiof a linear system
Aa=—b, (4.24)
wherea = [a1, as, ..., an]" is the vector of coefficients to be determined by solv-

ing the system of equations (4.24).andb are calculated according to (4.21, 4.22,
4.23); explicit expressions are given in [93]. For givergirencyw one thus ap-
proximates the field profile for a transmission problem witkpacific incoming
wave. Spectral information (transmittance, reflectane@)lwe obtained by repeat-
ing this procedure for a series of frequencies. The tramandé reads

2
N

Emp(Rw)+ > ap(w)Qp(R)| - (4.25)
p=1

1 Nout
T(w) |Ainc|2 Nin

We showed in [93] that the mirror field is necessary for appnating the in-
coming part of the transmission field on the whole spatialoregccupied by the
structure. However, an additional approximation that ialhgical in form can be
obtained without the mirror field when only the spectral sraittance profile is
considered. In cases where the underlying periodic seguenas a good mirror,
i.e. provides a high reflectance over the bandgap regiomttrer field could be
omitted from the field template. This is possible becausenrtineor field contribu-
tion in the relevant terms of (4.24) becomes negligible herfield at the end of the
structure where only outgoing waves are present. Then gigimach can be seen
as an alternative projection technique for a QNM expansion.
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4.6. Appendix B: Variational QNM. .
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Chapter 5

Negative index metamaterials
and thermal radiation

ABSTRACT

In this chapter we briefly review some of basic propertieshef negative index
metamaterials. Also, we address some novel propertiesedbandgap structure
and transmission spectra obtained by the introduction &N the construction

of the infinite and the finite multilayers. Finally we brieflgview some basics
concerning thermal radiation and multilayer structures.
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5.1 Negative index metamaterials

Negative index metamaterials are artificial compositearatterized by subwave-
length features and negative real part of the refractivexnaf the homogenized
structure. Usually they are made of an ordered or randommgeraent of unit
cells, i.e. elementary "particles”, that furnish effeetiglectromagnetic response
functions permittivity and permeability. A mathematicabpedure in which the
complicated microscopic electromagnetic fields existinghe inhomogeneous
medium are replaced by macroscopic fields that are smootying is called
homogenization. Then information on the microscopic prige of the medium
is discarded and the wave propagation becomes sensitiyd¢oomiacroscopic, av-
eraged properties of the effectively homogeneous media3®36]. The validity
of such a description is an issue in general, and the extracti the effective,
averaged material properties is a difficult task with nomuei solution. Heuris-
tically, the main prerequisite for the homogenization is subwavelength nature
of the elementary electric and magnetic "particles”. Thesams that the character-
istic length scales of the inhomogeneity are much smalkem the wavelength of
interest [31, 97, 34].

This is in contrast to other types of artificial structuresl amedia introduced
recently in optics such as Photonic Band-Gap materialsreviie features are in
the order of the wavelength, thus representing mesoscopies. Homogenized
effective electromagnetic response functions have beed it these structures,
despite of loose physical foundation, as a means of appediom for numerical
and qualitative investigations [7].

Negative index metamaterials were theoretically prediatel967 by Veselago
[32]. The concept relies on the analysis of the wave proj@gan media with
simultaneously negative real parts of both permeability permittivity, for which
the refractive index has to be chosen with a negative realggarell. Practically,
it seems that this type of material does not appear in natmetherefore it has to
be artificially made.

The main obstacle in exploiting these ideas earlier werentgogical limita-
tions that did not allow the fabrication of the proposed male and structures.
However, in the year 2000 Smith and Schurig performed anrerpat in the
microwave range demonstrating the feasibility of the meti@mal concept with
simultaneously negative permittivity and permeabilityainertain frequency range
and negative refraction [98]. They used a composite medionsisting of thin-
wires that furnish negative permittivity and split-ringsamators that furnish nega-
tive permeability.

The true explosion of the field came with seminal work of Sindd®endry
and his proposal of a device named "perfect lens” [99]. Thia device based on
a slab of the negative index media that resonantly amplifiesetranescent field
of an object and reconstructs both the far-field (propagatiaves) and near-field
(evanescent waves) components and thus enables the pedenstruction of an
image. The perfect lens operates in a regime that exceeddiffrection limit
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for an ordinary imaging device. This initial concept stdrimuch effort in the

research of metamaterials in the past several years. Ajthauperfect lens has
been shown to be of limited applicability in real-world sitions, many theoretical
and experimental results have been obtained in the direcfiomaging beyond

diffraction limit and improving and modifying other elegtnagnetic devices and
processes [100, 101, 102].

The major breakthrough is yet to come from possible reatinatof negative
index metamaterials for the optical frequencies. The kespautte is in the fact that
for the optical range there are no efficient materials witlgnedic (permeability)
response in the linear regime. Negative electric (pewrii)i response is achiev-
able with metallic materials and metallo-dielectric stawes [103]. The advent
of nanotechnologies could lead to a breakthrough in thectsirung of the ma-
terials for electromagnetic and optical applications with properties and func-
tionalities beyond those occurring in natural materialsegétive refractive in-
dices have been experimentally reported recently by sexesaarch groups, see
[40, 40, 41, 104, 105] and references therein. However,edigihs used for opti-
cal wavelengths so far suffer from the very strong dispersiod high absorption
losses.

5.1.1 Permeability, permittivity and refractive index

Consider harmonic wave propagation in a linear, isotrogaei homogeneous ma-
terial. The Maxwell equations in the frequency domain tresadr

k x E =iwpouH, (5.1)

k x H= —iwegeE. (5.2)

While the Helmholtz equation is
V2E(r,w) + K°E(r,w) = 0 (5.3)

with the plane wave solution

E(r,w) = E(w)eT, (5.4)
where )
K2 = k2% = i—ze(w),ur(w). (5.5)

Assume for the moment that permittivity and permeabilitg egal. It is evident
from (5.3) that ife and i are of the same sign the medium supports propagating
waves, while for opposite signs of the response functioaswvidives are evanescent
with purely imaginary wave vector. This is depicted in Fig.1 and can be
used for a classification of different materials, dependinghe type of waves that
medium supports.

89



Chapter 5. Negative index. 5.1. Negative index metamaterials

£<0, >0 wA 0, >0
Metals Dielectrics
Evanescent waves Propagating waves
£<0, p<0 >0, u<0 ¢ Figure 5.1: Permittivity-
- ermeabilit - dia-
Negative Ipdex Magnetic materials p y € - 1)
Metamaterials gram (real parts)for clas-
. p Evanescent waves sification of materials and
ropagating waves types of supported waves.

For plane wave solutions it becomes important to chooseogpitely the sign
in the expression for the wave number

k= %n — %\@ (5.6)

wheren = /eu = n,. + ingy IS the complex refractive index. Allowing now for
complexe andy in the relation

(nre + anm)z = (Ere + ieim)(ure + Z,U*zm) (57)

we have to consider conditions for the appropriate choict@fcomplex square
root. For simplicity, let us consider linearly polarizedwea with z-dependent
electric and magnetic fields

E(z) = Eyexp <z%nz) , H(z) = Eqexp (z%nz) (5.8)

,UTZO

where Zy = \/uo/¢o is the intrinsic impendance of vacuum. Hence, the time-
averaged Poynting vector reads

1 L n ] |Eol? w
S. = ZREE x H'] = Re [—] 27 exp(—2znzmz> (5.9)
In case of a passive possibly attenuating material one hasqidgre n;,, > 0
[2, 30]. From , this condition leads to

Nipg = €refbim + Ure€im (5.10)

2nim

hencen,. < 0 if an only if €,cptim + pre€im < 0. For causal and passive media
bothe;,, > 0 andu;,, > 0 have to satisfied [2, 30, 106]. Then we are left with the
rule (1.38)

Re(n) < 0 if Re(e) <0 and Re¢u) <0, (5.11)
Re(n) > 0 otherwise. '
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If we express complex numbets= z,. + iz, aSz = |z|exp(iy), whereyp =
arccotz . /zim), then

n= yey\u\exp<% {arccot(?) + arccot(fj"6 )D . (5.12)

According to the Maxwell equations (5.1) and (5.2) when Nide considered,
the electric and magnetic field and wave vector form leftioied set, in contrast
to the situation with positive inde, H, k, Figure 5.2. This is the reason for name
left-hnanded materialsised in part of the literature

S S
Figure 5.2: Electric
k field-magnetic field-wave
vector triad[E, H,k] and
Poynting vector S for
propagating electromag-
£ H £ ‘ H netic waves, a) Positive

index medium { > 0,
u > 0) b) Negative index
a) b) medium ¢ < 0, u < 0)

All causal materials are bound to be dispersive, becausel¢iotric and mag-
netic polarizations depend on the history of the appliedg$ighus responding non-
instantaneously to their influence [30]. Permeability aadhgttivity are in general
complex functions of the frequency where the imaginarysare related to dissi-
pative processes in the material. Real and imaginary patteg@ermeability and
permittivity are connected via Kramers-Kronig relatiods Z].

Several common microscopic descriptions of materialstieaabdels of damped
oscillators [2]. The response of the elementary oscilfatothe external excitation,
i.e. the time dynamic equations of motion of the polarizatemd magnetization,
in the presence of an oscillating electric and magnetic figdeh be written in the
form

7P+ 0P + wi P = eqwr E, (5.13)

#M + oM + w2, M = w? H (5.14)

wherew,.. (., is the resonance frequency of the electric(magnetic) dipstilla-
tors,I,,,) Is the damping frequency,. andw,,,, may be interpreted as measures
of the strength of the interaction between the correspondscillators and the
electric and magnetic fields [31, 106]. Hence, the frequatmyain material re-
sponse functions are of the form of the Lorenz oscillator

2 2
w w
cw)=1- P andu(w) =1— =

5.15
w2 — w2, +ilew (5.15)

2 2 ' :
w? — wi, +ilw
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Another model widely applicable for NIMs leads to a Drudpéydispersion (char-
acteristic for metals with free electron plasma)

wp wp
=1-— P andy(w)=1- — P 5.16
e(w) oty p(w) FCEYIvE (5.16)

wherew,(,,, are the effective electric and magnetic plasma frequercids’,
are electric (magnetic) damping factors (usually expibsss a fraction of the
plasma frequency). This represents a model of an artifikégltric and magnetic
plasma [13].

5.1.2 Energy density, phase and group velocity in NIM

The expression for the wnergy density in a linear, isotrdpgsless and nondisper-
sive medium gives a negative value for energy density if bathd . are negative.
In fact (1.28) can not be used in this situation because Nidg o be dispersive;
this observation supports that requirement further.

If we consider a narrow radiation band and use a Taylor serpansion about
the carrier frequency while retaining only the linear tertig possible to derive an
expression for the energy density [2, 30]

1 O(we) g | O(wp) o
W—2 R E° + o H*| . (5.17)

Equation (5.17) is applicable in the transparency regidmsfrequencies suffi-
ciently far away from a resonance and with negligible absamp Then, sufficient
conditions for the energy density to be positive definitearridese approximations

are
O(wp)

9we) _ 0. and > (5.18)
W

Ow
These are satisfied in the regions of normal dispersion déan flesonances and for
all dispersion relations used to model artificial electrgnetic structures such as
metamaterials as well as ordinary materials [30].

Note, that (5.17) is derived under rather special condititrat may not be
satisfied in general. In other situations of interest, such fiequency regions with
high absorption and anomalous dispersion, an expressrotindéoenergy density
stored in the dispersive medium can not be given in a closed 80, 31].

In fact, interactions between waves and structured medcaged with NIMs
are dynamical in their nature. Therefore, the steady stas@onse of the NIMs ap-
pears only after a certain time interval necessary foratidient processes to finish.
Further, dispersion has to be present to ensure positiireitdaess of the energy
density and necessarily is accompanied by losses due tordmadfs-Kronig re-
lations [30, 13]. Therefore, according to the current ustderding of NIMs, the
best performance that any possible design may achieve &#estabnly enlarged
frequency ranges of moderate or small dispersion and losses
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The phase velocity, i.e. the velocity of propagation of aplaf constant phase
reads

Vp = o (5.19)

It is clear that the sign of the phase velocity changes in NINViserefore, some-
times termbackward-wave mediar backward-phase velocity medis used for
materials with this property [96].

Another important quantity is the group velocity, i.e. thaocity of propaga-
tion of the envelope of a wave packet [2]

vy = Viw(K). (5.20)

Further, in media with negligible absorption, it can be shdtat group velocity
is equal to the energy flow velocity associated with the dioecof the Poynting
vector, which does not depend on material properties [10R, 3hus, negative
refractive index implies that the phase velocity is in theediion opposite to the
direction of the group velocity. Then, it is clear that phase energy velocity are
antiparallel. Note, that this discussion is applicableydnl configurations with
negligible losses.

Still, all realizable NIMs are fundamentally bound to bepdissive and lossy.
Hence, the simple notions regarding phase, group and enelggity need to be
modified in general. Some caution in the analysis of the waepagation in
regimes of anomalous dispersion and similar phenomenacisseary, see [30]
and references therein.

5.1.3 Photon momentum in NIM

The mechanical momentum density vedibx B associated with the electromag-
netic field is parallel to the local Poynting vecterx H both inside ordinary media
and inside NIMs [30]. This suggests that the linear momenbéia photonp and
the wave vectok are no longer parallel in NIMs. The linear photon momentum
and the wave vector are linked via the relation

p = +hk, (5.21)

where the plus sign corresponds to situations where ondimaterial are consid-
ered, and the minus sign is the appropriate choice for NIM®. [3his simple
change may lead to interesting consequences such as tevetggt pressure
[32, 30]. Although, the proper definition of photon momenttona general dis-
persive and lossy materials is still a bit of a problem, batblassical and quantum
optics, it is applied when NIMs are considered, see [30] afdrences therein.
We use (5.21) in chapter 6 we review briefly the derivationhef Planck’s law in
linear, isotropic, dispersive NIMs with negligible abstop.
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5.1.4 Snell's law and negative refraction

Let us consider a plane monochromatic wave
E;, = E(]Z‘ei(ki'r_wt) (522)

incident on a planar interface of two media characteriziggpérmittivities e; ()
and permeabilitieg, (), see Figure 5.3. Then, the reflected wave and the transmit-

ted wave are 4
E, = Eg ek, (5.23)
S A (5.24)
Magnetic field components may be obtained from (5.1) and.(32e wave num-
bers are defined via (5.5). The interface conditions accogipg Maxwell’s equa-
tions have to be satisfied for the fields at all points at therfate and at all times
[1, 2], and therefore a phase matching condition arises

(Kr - 1)z=0 = (K - 1)z=0 = (K¢ - 1) 2=0- (5.25)

The incident wave vector can be decomposed into its comp®hgn= “n; cos(0;)
andk;, = “n;sin(0;), as well as the other wave vectors in their components, see

Figure 5.3.

XA
Re(n,)>0 | Re(n,)>0
er* k
Ik B kr _tz>
v i k T .
AN >
6, 6, z
K ¥ k
k. 3 - t
iz kI <k_
Y, :
Re(n,)<0
51,)\1 82’)‘2

Figure 5.3: Phase-matching conditions and the positiveegative refraction at
the boundary between two media.

The phase-matching (5.25) conditions on the interface é&etvhe two media
leads to the laws of refraction Snell'law. The law of reflentis

0; = 0,, (5.26)
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unchanged from the situation with usual materials [30]. $hell's Law of refrac-
tion reads
n;sin(;) = n;sin(6y), (5.27)

and it also holds for all materials, including NIMs. Howevérn; < 0 then
f; < 0 and the transmitted wave is negatively refracted. Hereatnhegrefrac-
tion is a simple consequence of the interface conditiongHerelectromagnetic
fields. Note, that this type of negative refraction is funéatally different from
negative refraction encountered with the Photonic Cngitakttures [7]. There, the
negative refraction effect arises in the diffraction pgen the mesoscopic scale,
because structural properties vary on the scale of the aagti and the propaga-
tion direction of the refracted wave on the interface betwee@mogeneous media
and Photonic Crystal structure depends on the dispersiatiorein a complicated
manner [9, 7].

Expressions for amplitude reflection and transmissionficierfits, called Fres-
nell’s formulas for both TE and TM polarization, may be dedvrom the interface
conditions. They read for TE polarization

Ero _ ﬂ?kiz - #1]{7152

TTE = B m, (5.28)

trg = ?2 = % (5.29)
and for TM polarization

(B PR e 520

trag = % = % (5.31)

These relations are valid for general media that may be lassyell. It follows
that the reflection coefficient may become zero for eitheapzation for a certain
incidence angle (Brewster angle) and properly chosen pteam[30, 37, 13].

5.2 Multilayers containing negative index metamaterials

5.2.1 Phase compensation effect

The important feature of multilayers and other structurégh WIMs is the phase

compensation or the process of the partial or the full rehol/¢he wave phase
shift after propagating through consecutive PIM and NIMelay It is a conse-
guence of the sign reversal in the phase facigrs: k;.d; in (1.55) for the fields

in the layers with NIM. For a general multilayer containingM\ the phase com-
pensation influences greatly specific interference pattachmodifies the spectral
transmission and reflection properties [43, 107]. In fawo, tnajority of unusual

properties associated with NIM-based structures arisa fhos effect [31].
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For simplicity let us consider TE-polarization and planevevincident on bi-
nary grating consisting of two materials A and B with matepi@perties: 4 ()14 (B)
and thicknesseé ). The transfer matrix (1.55) connects amplitudes in the-adja
cent layers. Hence, the phase-shifts@ygs) = +%|na(p)|da(p) cos 0 4(p) Where
the plus sign corresponds to the usual positive index nahimid minus sign to the

NIMs, andsA(B) = jA(B)/,uA(B) = 4 /,UA(B)/EA(B) CcOos HA(B)- The correspond-
ing formal angled 43 are connected by Snell’s law (5.26) to the incident angle.
Let us consider a special case of a normally incident wave lélayer in
which slabs withe4 = p4 are in the aikep = up = 1. Thus, we have 4z = 1

and the transfer matrix becomes purely a phase-shift matrix

Aj . e thj=d; 0 Aj+1
< B > = ( 0 etik;zd; > ( B ) (5.32)

Therefore, the propagating wave does not experience aegtiefi at the interfaces
between the different layers. This situation is known aggeematching, i.e. when
intrinsic impedance of the material slab is the same as thi@asic impedance of
air (free space). For a finite multilayer with layers as in Figure 1.2, the overall
transfer matrix reads

A —i3 0 0 tA
0 | € 7= 0
( rAp > N ( 0 ety i1 ¢ ) < 0 > (5.33)

where the phase shifts age = k;.d; = w/cn;d;. Then, the amplitude transmis-
sion coefficient is e
t =g =19 (5.34)

The transfer function (5.34) is an all pass filter functioh feor a NIM-containing
multilayer the overall phase shift could become Z§E§V:1 ¢; = 0 for N even,
which corresponds to full phase compensation.

Although the considered situation is idealized and can eetdhnieved fully due
to intrinsic dispersion and losses in NIMs it representshtbst example of phase
compensation. In fact, a fully phase-compensated andgilrfeatched multilayer
represents a stack of Pendry’s perfect lenses [99]. Thistsire would perfectly
reconstruct both propagating (far field) and evanescerdr (field) components
from object to image, see [31] and references therein.

In other, non-ideal cases when reflections exist at inteddmetween layers
due to impedance mismatch, the presence of NIMs in the lagek snfluences the
overall phase shift.

5.2.2 Periodic structures with NIMs and non-Bragg bandgaps

Consider an infinite periodic structure with alternatingyilBland NIMs layers. The
mathematical model outlined in chapter 1 is fully applieafur the bangap analy-
sis of these structures. Hence, the dispersion relatigi2) tletermining bandgaps
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and pass bands can be obtained by solving (1.71). Phase osatips and pos-
sibilities for adjusting the reflection properties of irfteres up to the ideal perfect
matching case, can influence the bandgap structure grebitlg. enlarged num-
ber of parameters with respect to just one for ordinary igledtric and metal-
dielectric structures enables extended photonic bandggipeering. Several new
phenomena exist that cannot be observed for structuresovdthary media.

It can be easily shown for a binary stack as in previous stiosethat (1.71)
reads

7%+ 7%

cos(KpA) = cos (|kalda) cos (|kpldp) + ST

sin (|kalda) sin (|kp|dp).
(5.35)
whereZ gy = +/1a(s)/eas) is the characteristic impedance of layers A and

B. The minus sign corresponding to all-PIMs structure ardpthis sign to PIMs-
NIMs structure [42].

Some specific conditions may be drawn directly from (5.35)thé optical
thicknesses are equad 4|d4 = |np|dp then the right side of the (5.35) is always
greater theri. Thus, the spectral bandgap exists at all frequencies efargpoints
|kalda = |kp|dp = mm, wherem = 0, 1, 2... is an integer. If in addition structure
is perfectly matched74 = Zp, then (5.35) reduces @s(KpA) = 1 and for all
frequencies propagating waves are supported, i.e. basdgamot present. Addi-
tionally a structure may be designed to be omnidirectiarel exhibit bandgap for
both polarizations [108].

An especially interesting situation arises with the sdechkzero-n bandgap,
existing only for stack of alternating PIMs and NIMs layed§]. It is a new type
of photonic band gap, different from the Bragg gap, that ocxethen the averaged
effective refractive index of the whole structure equal®ze

(n) = Madatneds _ (5.36)
A

If dispersion is considered then (5.36) defines a charatitefrequency where
this bandgap appears. The zero-n gap is less sensitive tangelof the length-
scale (i.e. scaling the period) than the usual Bragg bargjgapd also exhibit
reduced sensitivity to t small scale randomness in the mahfoperties and the
thicknesses [46, 45]. It appears in periodic [46], quasigoic [47] and aperiodic
structures [48]. Structures operating in the zero-n regmag be effective mirrors
with nearly omnidirectional and unit reflectance while Kriesses may be well be-
low the operating wavelength [45]. In addition, with prdgeadjusted parameters
these structures may possess complete omnidirectiondgbps [44]. However,
some results suggest, that the conditipi = 0 may be only necessary but not suf-
ficient condition for bandgap opening; this holds espegciathen truncated, finite
multilayers are considered [109].

Defects in an otherwise periodic structure may give risedtfiect states in the
bandgaps. These defect states may appear in the ordinagyg Baadgaps or spe-
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cial zero-n bandgaps, where they appear to inherit someegiep such as lower
sensitivity to the incidence angle [45, 110].

5.2.3 Transmission spectra of finite multilayers with NIM

Any finite structure can be characterized by it's spectribcdon and transmis-
sion. As we already pointed out phase compensation can letdspecial spectral
characteristics of PIM-NIM multilayers. Most basic protes outlined for infinite
periodic structures are still present in the finite case.

Consider spectral transmission under normal incidenceafseries of finite
multilayers with material propertiesy = +2.25, u4 = +1, no = +1.5 and
ep = up = np = 1, while the external medium is assumed to be vacuum, the
same as material B. Plus and minus signs correspond to theechbPIMs or
NIMs media. The thicknesses of the layers are chosen to beequeavelength
Inalda = |nplds = Xo/4 with respect to a target wavelenglly = (27c)/wo.
Figure 5.4 depicts transmission coefficients and field mefdlomputed using the
transfer matrix method described in section 1.2.2.

First, in Figure 5.4 A) the spectral transmittance for paiganultilayers, i.e.
Bragg mirrors, coded asdB)3 A4, is depicted. Note, the difference betweRn-
N and P — P multilayers arising from the phase compensation in the- N
structure. Here, the bandgap extends over all frequenditbstie exception of
the discrete points (for the present finite structure regemound even multiples of
w/wp) as explained in the previous subsection. Characteristézference pattern
in the transmittance of the ordinay — P Bragg mirror is removed. The unit
transmittance for a fully compensated and perfectly impedanatched multilayer
(here the stack witlhy = 14) is also depicted. In Figure 5.4 B) the distribution
of the field profile modulusE(z)| in P — N multilayer for frequencyw/wy = 2
is shown. It has the characteristic of an extended trangmiggsonance field
distribution, similar to the ordinary? — P structure. It shows that the origin of the
transmission resonance is the same as in the multilayerondihary media. Note
that at the frequencies of the transmission resonance yke thicknesses satisfy
the conditionjna|da = |np|ldp = mAo/2 with m = 0,1,2..., i.e. the condition
for absentee layers in the periodic multilayer [4].

Second, in Figure 5.4 C) the spectral transmittance for sgtmodefectP — N
multilayer, coded ag$AB)*2A(BA)* is shown. Introduction of the defect in the
otherwise periodic structure gives rise to a transmissisomance in the middle of
the bandgap. This defect resonance is of Fabry-Perot tygehe periodic parts on
both sides of the multilayer play the role of mirrors enahgsthe effective cavity
represented by the defect. This interpretation is furthpsrted by inspecting
the distribution of the field profile modulus shown in Figurd B), where the
characteristic field localization and the enhancement énvihinity of the defect
can be observed.
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Figure 5.4: A) Spectral transmission for the PIM-PIM, PIMMNand fully com-

pensated and perfectly matched (= 14), PIM-NIM multilayer, B) Local field
profile modulus for PIM-NIM multilayer at transmission resmcew = 2wy C)

Defect PIM-NIM structure spectral transmission, D) Loceldiprofile modulus
for defect resonance = wy.

5.3 Thermal radiation and NIM materials

Thermal radiation is electromagnetic radiation assodiati¢h thermal phenomena
and heat transfer in material objects. It represents thesaimnental physical process
of radiative energy transfer associated with microscopémts of electromagnetic
radiation emission induced by electron transitions in &otinrough phonon tran-
sitions associated with molecular rotational and vibratiwodes and crystal lattice
oscillations [49, 50, 111]. In terms of wavelengths, it aevilne whole electromag-
netic spectrum, including the ultraviolet, visible andrared range.

The investigation of physical phenomena associated wéhrihl radiation in
nature an engineering applications is an important parbtif theoretical and ap-
plied science.

From the application point of view regarding NIM, one of théresting ques-
tions is the spectral and angular distribution of thermdiation in systems with
multilayer structures containing NIMs, for purposes ofrthal radiation control
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and tailoring through the design of such multilayers.

The material properties and physical phenomena assodciatiedhermal radi-
ation and heat transfer can be described only by taking ictowant both the clas-
sical and quantum nature of electromagnetic waves andititeraction with the
material objects [49, 50, 3, 51, 111]. However, in the cadéldf-containing mul-
tilayers the situation is well modelled by classical eledymamics, i.e. the propa-
gation of electromagnetic waves through optical strustufiéhe relevant quantum
physical processes are taken implicitly, while our modelisievith the interaction
of electromagnetic waves with matter using phenomencébgiad macroscopic
effective parameters.

5.3.1 Blackbody radiation and Planck’s law

An important concept when dealing with the thermal radratithe blackbody or
the perfect absorber (emitter). This denotes an objectatbsdrbs or emits all in-
cident electromagnetic radiation at all frequencies, \a&itl polarization and from
all directions. The blackbody as a perfect absorber is alatanwith which real ab-
sorbers are compared. The blackbody is also a perfect emiteyery frequency
and in all directions, while the total radiated power is acliom of temperature
only. These properties follow from the thermodynamic pipte of the detailed
energy balance in thermal equilibrium [49, 50].

N
3 N
T=const. * Blackbody
z 7 ﬁ %

Isothermal enclosure

Figure 5.5: Blackbody: mate-
rial object in thermal equilibrium
with the isothermal enclosure at
a constant temperature T.

The blackbody is an idealized object and can be only appratachby real
bodies. As illustrated in Figure 5.5 the usual approach th sn approximation
in experimental situations is to consider an absorber innatosure (cavity) with
perfectly absorbing boundaries. For such an object in theequilibrium the ab-
sorption and emission rates will be equal for the radiatiradjscof the enclosure
and for the absorber itself. Thus an isothermal situaticactseved. In this case
a constant temperature may be assigned both to the encksifaze and to the
object inside the cavity. If a small pinhole is made in theityawall, the electro-
magnetic radiation emerging from it will be very close to tadiation in the cavity,
i.e. it will be the nearly perfect blackbody radiation [49]5
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The blackbody power spectral distribution for EM radiatinthermal equilib-
rium at a macroscopic temperatifeand with frequency within homogeneous,
isotropic space is described by the Planck law [51, 50]

2 A

where = 1/(kgT) andkp is the Boltzmann constant arficthe reduced Planck
constant.

5.3.2 Kirchhoff’s law for thermal radiation

A phenomenological description of the macroscopic intiwachetween thermal
radiation and matter includes the processes of reflectiansinission and absorp
tion. If radiation is regarded as an electromagnetic wavagaly be only reflected
from the surface, transmitted through the material objecalsorbed within it,
see Figure 5.6. As already seen in Chapter 1, energy cotiservaay be quan-
tified through three phenomenological dimensionless dfiesit the reflectance
R, the transmittanc& and the absorptancd; all these quantities are defined as
ratios of the corresponding spectral power densities, liysdascribed by the re-
spective Poynting vectors [49, 50, 51]. Energy consermatien requires that
R+T+A=1

Further, all material objects emit radiation within thesfwme and the radiation
may escape from the surface into the surrounding space. diifuthe emissive
properties, we define an additional phenomenological gyahtcalled emittance.

It represents the ratio between the energy emitted fromulface to the energy
emitted by a blackbody at the same temperature. The blagkbmittance equals
unity.

The relation between the emissive and the absorptive pgrepaf a material
object in thermal equilibrium is expressed by the KirchHaff. It states that the
spectral emittance and the spectral absorptance of a adaibject in thermal equi-
librium with its surroundings are equal for a given tempematand for every fre-
quency, direction and polarizatiot(w,T’) = A(w,T"). This law can be obtained
from the thermodynamical principle of detailed energy hedain the equilibrium
that imposes an equality between the amount of energy bbswlaed and emitted
per frequency at a given temperature [49, 50, 51]. It istyraorrect only for ther-
mal equilibrium in an isothermal enclosure. However, expental observations
show that it approximates well the majority of practicaliations where a local
thermodynamic equilibrium is maintained.

The thermal equilibrium of the whole system depicted in Fegh.6 dictates
energy conservation and through the Kirchhoff law imposesdation between the
following macroscopic quantities:

Ew)=Aw)=1—-R(w) — T(w). (5.38)
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2
Incident ﬁ Reflected
radiation \\ radiation
Absorbed
radiation

Transmitted@ Figure 5.6: Absorption, reflec-

radiation tion and transmission of radia-
tion incident on a material.

Then, the spectral power distribution can be obtained byiptyihg the blackbody
power spectrum from Planck’s law (5.37) by the calculatedttance:

pw, B) = Bw)p"P (w, B). (5.39)

Equation (5.38) is fundamental for the analysis of the emndsgroperties of ma-
terial objects. It establishes the basis of the indirecthoetfor computing the
thermal emission properties of arbitrary material objéietsugh determining their
respective absorption. In [112] the emission propertiekighly dispersive and
absorptive photonic crystals are calculated directly drahtcompared with the
predictions of the indirect method. The results suggessitideed, in thermal
equilibrium, the indirect method gives an excellent agreetmvith the simulations
based on the direct method.

Thermal radiation seen as electromagnetic waves may havelifierent po-
larizations through the emittanderr and Er;, for TE and TM polarizations re-
spectively. Unpolarized thermal radiation (blackbodyiatidn) is assumed to have
equal portions of both polarizations = 1/2(Erg + Epyr). We consider both
polarized and unpolarized emittance.

5.3.3 Thermal radiation antennas with multilayer structures

A thermal radiation antenna is a device that emits (absdhesjnal radiation in a
certain frequency range and into (from) a certain directibinus, such a structure
possesses the properties of both selectivity and diredtignsimilar to the basic
traits of electromagnetic radiation antennas.

The theoretical foundations for photonic bandgap (PB&Ggdahermal radia-
tion control have been outlined in [52]. Periodic structuvéth an intrinsic pho-
tonic bandgap alter the thermal radiation spectrum by mpodifthe photonic den-
sity of modes. Thermal radiation is suppressed at freqesrinside the photonic
bandgap, and enhanced at the frequencies of transmissiomarmgces. In this way
a spectral redistribution of thermal power is achieved.sEmnables a control over
thermal emission processes. In the case of 1D structurdscautrol is readily
implemented by the available thin-film technologies.
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A simple and straightforward approach to the computatiorthef modified
spectral emittance is to apply the mentioned indirect ne{b&]. It may be ap-
plied to determine the dependence of absorption both orrélggéncy and on the
incident radiation angle. The indirect method has been lwigleplied in literature
to investigate the possibilities of thermal radiation cohby 1D, 2D and 3D PBG
structures, see [113, 114, 115, 55, 56] and referencesdrthere

NIM
PIM

Emitting/absorbing -
substrate (very thick)

Figure 5.7: A general passive multilayer filtering systemtf@rmal radiation con-
trol. The multilayer positioned on the top of a thick absogbsubstrate enables
spectral and angular distribution shaping. The actualrorgef materials shown
in the multilayer will depend on the concrete design.

The design of thermal sources with the emittance enhancacharrow solid
angle through the application of a multilayer filter has beéinterest in the re-
cent period [53, 54]. The indirect method enables the desiginthermal radiation
control system by tailoring the properties of the multilesy@pplied as spectral
and angular filters. All structures used so far were eithledialectric or metal-
dielectric multilayer coatings that enhanced or suppresisermal emission of ab-
sorptive/emissive substrates [54]. These designs prdwvedractical feasibility of
spectral and angular control of radiation from thermal sesiin the IR range. Thin
film technology has been a sound foundation for this task.pbssibilities offered
by periodic all-dielectric or metal-dielectric PBG medi8] may be expanded by
the introduction of negative index metamaterials (NIM)§1117, 118]. The ad-
vances in the technology of nanostructured materials dhedalIMs for the optical
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range, see [13] and references therein. This offered nevede®f freedom in the
so far theoretical design of structures for thermal radrationtrol.

Indeed, the investigation of multilayers consisting ofaiating dielectric (pos-
itive index material, PIM) and NIM layers showed novel prdjgs convenient
for emittance/absorptance tailoring [116, 117, 118]. Fatance, widening and
flattening of the spectral emittance was demonstrated,ewdtilthe same time
the angular dependence was much weaker [116]. FurtherbiidiEs for emit-
tance/absorptance tailoring are introduced by utilizinljistcontaining pre-fractal
[117] and quasi-periodic multilayers [119, 118]. Excellselectivity and direc-
tionality properties were observed in these structuregnadonsidered as thermal
radiation antennas [117, 118, 120].

Figure 2 shows a general passive NIM-containing multildifer for thermal
radiation control. It consists of a combination of positaed negative refractive
index strata. This multilayer may be periodic, quasi-pidar aperiodic and may
contain one or more defect layers. This configuration maydesa @s a thermal
radiation antenna.

In chapters 7 and 8 we investigate the NIM-containing maygkrs deposited
on a thick absorbing substrate. These structures simoltsshe perform spectral
filtering and angular redistribution of thermal radiation.
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Chapter 6

Transmission spectra of
Thue-Morse multilayers
containing negative index
metamaterials

Abstract?!

We study the optical transmission spectra in one-dimeasiaperiodic Thue-
Morse multilayers composed from alternating layers of redith positive and
negative refractive index. We examine the influence of pt@asgpensation on the
spectral transmission for both on-axis and off-axis waw@ppgation. The origin
of the transmission resonances and their relation with thie fiocalization are an-
alyzed. Nondispersive and lossless, as well as realistipedisive and weakly lossy
materials are considered.

1This chapter is adapted from: M. Maksimovic, Z. JakJi@nsmission spectra of Thue-Morse
multilayers containing negative index metamateridlsta Physica Polonica A,Vol. 112, No. 5, pp.
1055-1060, 2007
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6.1 Introduction

Negative refractive index metamaterials (NIM) are art#filyi structured media
with sub-wavelength features and with simultaneously megalielectric permit-
tivity and magnetic permeability [31, 38, 13]. The directiof the Poynting vector
Sin NIM is opposite to that of the wavevecthr, i.e. electric, magnetic field and
wave vectorgE, H, k] form a left-oriented triplet. This is the reason why such
media were dubbed "left-handed materials”, contrary todbteventional "right-
handed materials” (positive refractive index, PIM). Lagjtorts have been dedi-
cated to the NIM research in the recent years ([31, 38, 13}efedences therein).
The operating wavelengths have been progressively déogeaad negative re-
fractive behavior has been observed in the optical rang&][10

Multilayers with NIM part and with periodic [42, 46], quageriodic (Fibonnacci-
type) [121], or pre-fractal (Cantor-type) [122, 117] lay@rangements, attracted
attention due to their many peculiar properties with bo#otietical and practical
interest.

We investigate non-periodic one-dimensional stacks camgpmf alternating
layers of media with positive and negative refractive indéhe stacks follow
a design rule based on the model aperiodic Thue-Morse (TtM3tgution se-
quence [16, 17, 123, 124, 125]. All-PIM T-M type multilaygrgssess interesting
and useful spectral properties, such as self-similanigcsal scalability and well-
localized multiple resonances in their optical transmoissspectra [16, 17, 123,
124, 125]. We employ the Transfer Matrix Method as outlinec¢hapter 1, sec-
tion (1.2.2) for numerical computations and analysis [15gme results on T-M
multilayers with NIM are obtained in [47, 48] with the pretion of a new type
of a non-Bragg, zero-n bandgap (where the averaged value akfractive index
in the structure is zero). We dedicate our attention to tserrances in the trans-
mission spectra and the field distributions associated thé@m for finite structures
with both on-axis and of-axis wave propagation. The angdéendence of the
transmission spectra and of the resonances robustnessesyibct to the phase
shift modulation are investigated. Transmission spectra-ld multilayer with
dispersive and lossy NIM parts are considered.

6.2 Theory and results

A Thue-Morse substitution sequence can be defined via aybalphabet{ A, B}
and a set of simple mapping rulds— AB, B — BA, with the symbolA4 as an
initiator. The first several T-M generations afle AB, ABBA, ABBABAAB,
ABBABAABBAABABBA, etc.

A schematic presentation of T-M multilayers and of a singl&lHRIM inter-
face is shown in Figure 6.1. Even-order T-M multilayers gsssa mirror sym-
metry in refractive index distribution. The number of elartsein the sequence
increases in the-th generation ag”, while the number of different elements
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andB remains equal. We take two refractive indi¢es, n) and physical lengths
(d4,dp) that correspond tel and B in the T-M sequence. The refractive index in
the incident and in the output medium is assumed to be egual 1.

-
3 D A =
npim=na>0 nnim=ng<0
da ds
- Piv MY

Figure 6.1: Left: aperiodic structures composed of NIM ailld Btrata arranged
as Thue- Morse sets for second, third and fourth generatigimi: schematic pre-
sentation of a negative index-positive index materialrfatee.

First, we chose frequency independent values of refracitieesn 4 = 1.41
(ea=2,ua=1),ng=—-2(ep = —4, up = —1), for the purpose of comparison
with the prior results in literature without a loss of geriéya We introduce the
reduced optical thickness d4s = a)g, npdp = B\, with the phase shifts in
the corresponding layers given &g = 2maf cos(© 4) andd, = 2732 cos(Op)

, whereQ2 = \y/X\g = w/wy is the normalized frequency/wavelength with and
Ao being reference frequency and wavelength.

In the case of oblique incidence the angles of propag#ign© z are obtained
via Snell's lawng sin(©g) = nasin(04) = npsin(Op), where®y is the inci-
dence angle in the input medium. Whan= 3 = 0.25 we are dealing with a
quarter- -wavelength optical thickness, which is the ushaice in literature.

The interplay between the order and the phase compensat@stia{ or full
removal of the phase shift after propagating through a PIM-ktructure) greatly
affects the spectral resonances in the stacks based oredifierdering schemes.
Periodic multilayers with NIM exhibit wide band gaps andtéaked transmission
[42] [43], as shown in Figure 6.2 a). On the other hand T-M itaylers exhibit a
similar behavior with the distinctive feature of the existe of resonances in the
middle of the Bragg band gap, as seen in Figure 6.2 b). Maltipkonances in
the spectra of all-PIM periodic or T-M multilayers are no¢gent in the PIM-NIM
structures due to phase compensation, see Figure 6.2 c))aidhile the quasi-
periodic and pre-fractal Cantor NIM-containing multilaggpossess self-similar
and scalable spectra for higher generations [122],[11 7} multilayers these
spectral properties are absent, even in the dispersiocafestssless case.
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Figure 6.2: Direct comparison of transmission spectralféPM (solid) and PIM-
NIM (dashed) periodic multilayer with 32 layers in stack apabth generation
T-M multilayers b) and equal quarter-wavelength opticatkhess. Transmission
spectra for 5th generation c) and 6th generation d) T-M iaykr.
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Figure 6.3: Intensity profile for normal incidence in allMPand PIM-NIM T-M
multilayer for 4th a), 5th b) and 6th generation c) &he- 1.

In PIM-NIM T-M multilayers only a midgap resonancefat= 1 is present for
normal incidence, due to a special spatial correlation enTM multilayer. The
field modulus distribution is identical for both all-PIM afIM-NIM structures
and follows the structure of the T-M sequence, as shown iarEi§.3. Alternating
symmetric and asymmetric arrangements of layers in sugeegsnerations of
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the T-M multilayers determines the nature of the spectrsbmances, i.e. perfect
transmission exists in mirror symmetric structures everofdique incidence. In
asymmetric multilayers a perfect transmission resonah€e-a 1 exists only for
normal incidence and the quarter-wavelength optical tiesk (equal phase shifts).

The resonance shift and the pronounced angular dependeading to the
appearance of multiple resonances for oblique incidereshawn in Figure 6.4
A) and B) is in contrast with some predictions that the traigsian spectra of
PIM-NIM structures are generally less sensitive to thedance angle [42, 46, 43].
The number and the positions of transmission resonancaesgreensitive to the
modulation of the optical thickness [124, 125] which is dgaeen in Figure 6.4
c) for a 5th generation T-M multilayer (higher generatiohew similar behavior).

All NIM realized until now are dispersive and lossy, thus finave choose
more realistic and very strong Drude-type dispersion iglat

w2 2
(W) =1— —P ) =1— ——Pm (6.1)
w(w + jT) w(w + jT')

wherew,,,,) are the electric (magnetic) artificial plasma frequencies 13, )
are electric (magnetic) damping constants (which can beesgpd as a fraction of
the plasma frequency [31]. We chasg. = wpy, = wp andl'y,e = 'y, = T =
wp107C, thus the refractive index of the NIM part reads

w2 02
n(w) =velwp(w) =1-— w—g +4107% and n(Q) ~ 1 — Q—g +4107% (6.2)

We assumed very small but still present losses, thus awpiginelectromag-
netic nihility (material parameters locally equal to zerBarameters for the NIM
part are chosen in a such way that the physical thicknesseas giccording to the
condition|np|dp = 0.25X, for np(Q = 1) = —2 (andQ2 = 3), while the pa-
rameters in the PIM part are the same as before. In this wadyrbotulations of
the scattering strength (refractive index contrast) amdpthase shift are present
[124, 125]. Transmission spectra with many resonancesaagfigure 6.4 d), but
without obvious special spectral properties arising frdva order or the material
properties.

6.3 Concluding remarks

We have presented transmission spectra for the Thue-Mark#ayers com- posed
from alternating layers with positive and negative refkecindices. In contrast
to other non-periodic NIM-containing multilayers wherdfsemilar and scalable
spectra occurred for higher generations, for T-M multitaythese spectral proper-
ties do not appeatr, even in the dispersionless and lossiess While the periodic
structures with NIM exhibit wide band gaps, T-M multilayepghibit transmission
resonances located at the midgap frequency of the perioditlager. The field
distribution at the resonance frequency suggests a comnigin o both all-PIM
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Figure 6.4: Transmission spectra for oblique incidence:5th generation a) and
the 6th generation T-M muiltilayer b). Transmission spefdraarying layer thick-
ness parameter (with o+ = 0.5) at normal incidence and 5th T-M multilayer c).
Transmission spectra for normal incidence and with (sir@rgde-type frequency
dispersion in the NIM part and small loss d)

and NIM-containing multilayers connected with the existerf special spatial
correlation irrespective of internal mirror symmetry. Tgasition of this resonance
is very sensitive to the incidence angle and the phase+sbiflulation, suggesting
that the phase compensation is most effective in equalepblait structures. The
introduction of realistic material dispersion in the NIM tadal introduces both
phase shift and scattering strength modulation in the tsireic This increases the
number of transmission resonances even under normal immdeonditions and
effectively diminishes the influence of the aperiodic orded the phase compen-
sation. The prospect of a weak material dispersion in the M#ds to a potential
for the application of the optical phenomena associateld aperiodic order.
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Chapter 7

Thermal radiation and 1D
periodic structures containing
negative index metamaterials

Abstract 1

We investigate modification of the thermal radiation powggctrum in 1D peri-

odic structures containing negative index materials. Vileatl an approach based
on the Kirchoffs second law and applied the transfer matrethad to calculate

emittance and to obtain the power spectrum of the periodigcgire on top of a

thick absorbing substrate. We analyzed both on-axis andxidfradiation.

This chapter is adapted from: M. Maksimovic, Z. Jak$dndification of thermal radiation
by periodical structures containing negative refractineéx metamateriaJ$2hysics Letters A, Vol.
342, No. 5-6, pp. 497-503, 2005
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Chapter 7. Thermal radiation and 7.1. Introduction

7.1 Introduction

Negative index metamaterials (NIM) are artificial compesiibwavelength struc-
tures with effective electromagnetic response functigresmittivity and perme-

ability) artificially tuned to achieve negative values oéithreal part [31]. These
materials were theoretically predicted by Veselago [32beeimentally confirmed

by Smith [126] and both experimentally and theoreticallyeistigated by many
different teams in past years.

The underlying principle in constructing NIM relies on thepaarance of ef-
fective permittivity and permeability both lower than zémahe same well defined
frequency band. The analyticity of refractive index regarés a complex func-
tion and the causality principle require that the real pétte refractive index also
be negative [106]. A consequence is that the product of #netred and magnetic
field vectors is antiparallel with the wave vector, i.e. waldeith backward waves
whose phase velocity is antiparallel with Poynting veacidrile electric, magnetic
field and wave vector form a left-oriented set. This is thesoeawhy such struc-
tures are sometimes called "left-handed materials”.

Many interesting phenomena not appearing in natural meeia wredicted
and observed in double negative materials. These inclugatime refraction (the
reversal of the Snell’'s law), perfect lensing [99], the appace of subwavelength
resonant cavities [33], reversal of Cherenkov radiatidi] fghd many other appli-
cation in applied electromagnetics [97],[37].

An interesting topic of investigation is the distributiohetectromagnetic modes
in layered structures incorporating negative index malri The use of conven-
tional photonic crystal structures to modify thermal rdidia was investigated by
Cornelius and Dowling [52]. Subsequent theoretical anceegrpental results on
the same topic include [113, 114, 115, 55, 56, 53, 54, 127thdncase of wave
propagation through a structure consisting of a both p@sitfractive index ma-
terial (PIM) and NIM layers a very important phenomenon cigdncompensation
occurs, which may be described as a partial or complete rahodbphase shift of
an electromagnetic wave propagating through a PIM-NIMcstme [12].

In [30, 128] a modification of Planck law in NIM was derivedyiglg on a sim-
ple quantized field description. There are few other papeatiry with the quan-
tum field description of NIM-related phenomena and someasteng phenomena
that arise from it, like the modification of spontaneous eiis and super-radiance
effect [129, 130, 131, 132].

In this chapter we investigate the modification of thermelation power spec-
trum by one-dimensional structures incorporating both Midl conventional ma-
terials, emphasizing influence of phase compensation. &bz periodic 1D
structures and include both normal and oblique wave incideWe use an indirect
method based on the second Kirchhoff's law for thermal tamhato investigate
the emittance of blackbody when a multilayer structure ipocating NIM is used
as a filter on a thick blackbody. In our calculations we usentbi known transfer
matrix technique [1, 2, 4]
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7.2 The Planck law in negative index metamaterials

Since metamaterials are structured on a subwavelength, st# assumed that
their magnetic and electric response can be described bytig# permeability
and permittivity . A practice often met in literature whervastigating NIM is
to analyze the cases with frequency independeamd ;. as a first approximation
of the real materials [43],[46],[45, 45]. However, realiffametamaterial must be
dispersive and lossy in order to preserve causality prie¢gD, 31].

For the sake of simplicity we assume that both effective téixity and per-
meability are of the same form

w2, Wi,

and the effective electric and magnetic plasma frequengjgs,,) and electric
(magnetic) damping factois, ,,,y are equalv,e = wpm = wp andlye = Ly, =
I',. This choice simplifies the form of and . The refractive index of NIM

n = \/eu is thus
2
w

p
n(w)=1-— EEET (7.2)

In our calculations, we assume that damping is negligibleickv can be ac-
ceptable approximation in certain frequency range. Wheamylonetamaterial is
considered, a common assumption in literature is that thepitay factor is given
as a fraction of plasma frequency [31].

An expression for the Planck radiation law in NRM media watawied in
[128] by following a simple quantized-field description f@diation in negative-
index material, which was assumed to be isotropic, dispeesd absorptionless at
frequencies of interest. The approach was based on modifisteih coefficients
of spontaneous emission and absorption in the light of alsimjectric dipole
transition picture [51, 11] Similar results were obtained129, 130, 131, 132].

The same result can be obtained by a simple textbook appi&édchill],
which is valid for any medium described by dispersive rdfvacindex and thus
does not make a distinction between NIM and ordinary dispereedia. We apply
it in the following manner. The density of photon states pdume of a photon
set occupying a range of impulsgs, p + dp) is dG(p) = 2(4wp?dp/h?), where
p = £hk andk is the photon wave vector; the multiplier 2 is due to the numbe
of polarizations and:® stems from Heisenberg relations. We assume standard
boundary conditions at the boundaries of the volume [51]e firtean number of
photons is governed by Bose-Einstein distribution [1hlistthe density of photons
S 2 Amp?dp
~ W3 exp(ep/kpT) —1°
wherekp is Boltzmann constant anfl is temperature. Furthep, = hwn(w)/c
anddp = hwy(w)n(w)/c, wherey(w) = n(w) + w. These relations

dN (p) (7.3)
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together with (7.3) lead to expression for density of phstper unit frequency
dN (w)/(dw). Then, the spectral energy density defined is
dN(w)  hw? n?(w)y(w)

plw) = hw dw 723 exp(hw/kgT) — 1" (7.4)

Expression (7.4) is the Planck’s law in homogeneous, ipatraispersive NIM
media with negligible absorption. It can be seen that (7i#grd form the Planck
law for vacuum only in factor depending on dispersive prtperof the medium:

PV (@) = 02wy () (7.5)

For the dispersion described by (7.2) modification factosfiectral power density
of equilibrium radiation for the space filled by NIM reads

n2(w)y(w) = (1 - (%)2>2 (1 + (%)j . (7.6)

7.3 Thermal radiation and multilayers containing nega-
tive index metamaterials

We consider a system in thermal equilibrium at a given teatpee, its radiation
having a Planck’s blackbody (BB) spectrum. From the pointi@v of prospective
practical applications, the blackbody radiation may be ifiedi using a photonic
crystal filter and thus altering the spectral emissivity lné BB radiator and/or
changing the angular distribution of the radiation. Thiswane in [52] for the
case of purely positive-media structures.

In a most general case the photonic crystal filter may havel 2fuor 3D
periodicity (or even be quasi-periodic) [7]. According tonditions outlined in
[52], qualitative predictions in that case can be from 1D siod

To calculate the modification of thermal radiation, it is @sgary to determine
the thermal emittance E of the photonic crystal. This is dopean "indirect”
method based on the Kirchhoff’s law of detailed balance. oiding to it a mate-
rial’s emittance in thermal equilibrium is proportionalite absorbtance, and for a
blackbody they are equal, see chapter 5 and referenceinth€he absorptance is
defined by the reflection and transmission coefficient A=1—- R —T.

Once the emittance is obtained, its multiplication by theniek spectral power
density gives the power spectrum of the PBG emitBF“(w) in terms of its
emittanceF (w) and the blackbody spectrup??(w) given by 7.4

pPPe(w) = B(w)pPP (w) (7.7)

Fig. 1 represents a photonic band gap (PBG) structure sdléatmodify the
mode density of radiation of the emitting substrate S. Inreega case it contains
both positive index materials and NRM. The structure irkilthermal emittance
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unit cell
Na,da  hp,ds ns,ds>>da,ds
1 T
—=
R S 0
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1

Figure 7.1: Basic 1D multilayer structure for emissivityntm|.

from the substrate at frequencies within the PBG, but erdmit@t the band-edge.
This result is confirmed for the case of all-dielectric andahdielectric positive
index PBG materials both theoretically [52] and experirani{54, 127].

The structure is composed from two media with refractivades! (4, ng)
and a geometrical thicknesgA, dg), A and B denoting the conventional and the
NIM slabs, respectively. The structure is deposited onektbubstrated >> )
with an indexng. We chose layers with a quarter-wavelength optical thiskne
nadsa = npdp = Xo/4. Hence, the phase shifts in the corresponding layers
areds = (r/2)Q andép = (7/2)Q2 whereQ = A\g/\ = w/wp is normalized
frequency. The entire structure is surrounded by a medigi@ir or vacuum).

We chose a quarter-wavelength optical thickness for owriato establish a
connection with prior experimental and theoretical workl &m directly compare
our results to those previously published. More specificalhe encounters the
same choice of individual layers thickness in literatureabsorptance and emit-
tance tailoring by PBG structures [52] but also in papers &iMNcaused phase
compensation and its application for antireflection cagjrhigh-reflective coat-
ings, transmission filters, and many other functionaliff3,[46, 45]. While there
is no fundamental reason not to use a different optical ti@sk, quarter wave-
length appears to be the most frequently used approach fferedit optical ap-
plications and one gets a clear physical picture withoutsa tf generality. Only
a similar spectral behavior could be obtained by differdwttice of optical thick-
ness [4], [43], but it remains a question of practical impdetation for a concrete
design.

The transfer matrix technique which includes material glisipn and absorp-
tive losses [1, 4] can be used to compute transmission arettiefi coefficients
and the power spectrum. We apply it using interface matfitgs ( at the inter-
face between media A and B) and propagation matitgéwherep € {A, B, S}).

Map =1/2[14+np/na 1—np/na; 1 —np/na 1+np/na (7.8)

M, = [exp(—idy) 0; 0 exp(+idy)], Op = 2mnpLy/A. (7.9)

In the case of oblique incidence the above matrices retansétime form, but
one has to substitute 43y — nacos(f4p)) for corresponding refractive in-
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dices in the propagation matrices for both TE- and TM-pakion, andh 4p) —
n () cos(04(p)) for TE-polarization andh 4g) — n4(p)/ cos(f4(p)) for TM-
polarization in the interface matrices. The overall tranghatrix for the chosen
structure is given as a product of the interface and the gatpan matrices [1, 4].
The transmission and the reflection coefficient of the gitemcture follow from
the overall transfer matrix which has the foMh= [my1 mq2; mo; mos] and are
expressed through the formulas

T=——andR=|—|". (7.10)

In our investigation we consider isotropic media for botm1uispersive and dis-
persive cases.

One should note here that no plasmon modes interacting étimtident plane
wave and changing emittance spectra were taken into acaotins paper. The
reason is that a propagating plane wave incident on a flacifannot excite sur-
face plasmons regardless of its incidence angle, sincdabmpn modes must have
a larger momentum at the same frequency for all energiesdamesl [31]. Thus
no influence of the plasmon mode to the emittance charatitsrisan be expected.
To change this situation, one would have to provide an amuitimomentum to
disturb the plasmon mode, e.g. to use surface roughnesstiaggstructure or
similar. This is valid both in the case of positive and negaindex materials [31].

7.4 Results and discussion

Figure 7.2 shows the calculated emissivity of 1D PBG stmastwersus frequency
and angle of incidence for different polarizations. Figdr2 a) shows the emis-
sivity of an all-dielectric PBG material for unpolarizedsea We obtained similar
dependencies for the all-dielectric structure for s- amblarizations (not shown
here). Figure 7.2 b)-d) show the calculated emissivity dfiNlontaining 1D PBG
structures for different polarizations.

The dependence in Figure 7.2 a) illustrates a problem gertito all positive-
material PBG filters: such structures can either have amoiti performance in
a very narrow wavelength range for all incident angles, oaftarger wavelength
range, but for a very limited spatial angle.

This is not the case with the NIM-containing filters. Figur2 )-d) shows that
the angular dependence in emittance spectrum is much lessramt than in ordi-
nary PBG structures. This points out to the possibility adigeing efficient NIM
filters almost insensitive on the radiation propagation@ngtructures containing
NIM influence differently the thermal radiation spectrumcomparison to ordi-
nary media PBG structure. The suppressed region of themdétion is wider,
and the spectral characteristics more flat, i.e. withoutgsbacillation typical for
positive index materials. The influence of the angle of ianitk is less noticeable
than for the corresponding ordinary structures. The erma#tahows no ripples and
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Figure 7.2: Emittance as a function of incident artylend normalized frequency
w/wq for NIM-containing 1D PBG structurey periods,ns = 1.41 ;np = —2;
a) unpolarized case, positive index material, = 1.41, ng = 2. b) TE-mode
polarized emittancé&r; ¢) TM-mode polarized emittandér,,; d) unpolarized
E =1/2(Erg + Eru); In all casesis = 3 + 0.3 for the substrate.

no sharp frequency shifts between polarizations. Suchvi@ha a result of phase
compensation, see Chapter 5 and references therein.

Further we considered a more realistic case with dispetaian into account.
We used the form (7.2), assuming that= 0. Figure 7.3 depicts the emittance
versus incident anglé and normalized frequenay/wy modified by dispersive
NIM for unpolarized case. We used the Drude model for therigesmn of meta-
materials [31]. The dispersion we used was(w/wg) = 1 — 3(w/wo)? where
wy is the quarter-wavelength frequency. We choge= wo/v/3 in (7.2), thus ob-
tainingnp = —2 atw/wy = 1, the same absolute refractive index value as that
used to calculate the dispersionless case in Figure 7.2.uvifeef usedhy = 2,
La = 0.25\g/na, Lp = 0.25)\g/np andLs = 10\g/Re(ng). The calculated
emittance in Figure 7.3 clearly shows the existence of fadg® compensation in
the emittance spectrum (the peak values at the frequepy = 1.

Similar to zero-n photonic band gap [46, 110], also obtaibgdtacking al-
ternating layers of positive index materials and NIM butnfghing transmission
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Figure 7.3: Emittancd”(w/wy,0) as a function of incident anglé and nor-
malized frequencyw, for unpolarized case with dispersion taken into account,
nB(w/woy) = 1 — 3(wp/w)? andwy = 2mc/)\o -quarter-wavelength frequency
(at this frequencyng = —2) ng = 2, Ly = 0.25\g/na, Lp = 0.25)\¢/np,

LS = 10)\0/R€(’I’Ls)

minimum, this phase compensated situation arises whervéraged effective re-
fractive index of the structure equals zero. The resultiagaw transmission peak
is almost invariant with respect to a length scale changea#émdst insensitive to
angular dependence [45]. There is a shift toward highemieqgies in spectral
emittance for phase compensated situation in for largeleand he same feature
can be observed both in periodic and in quasi-periodic sp¢t18].
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Figure 7.4: Comparison of emittance for conventional naylérs and NIM for
different numbers of layer pairs N4 = 1.41, ng = 3 +1i0.3. ng = —2 for NIM
case anahp = 2 for conventional multilayer case.

Figure 7.4 show the changes of the spectral emittance withcapase of layer
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pairs number for dispersionless NIM-containing multilesyvith absorptive sub-
strate for the case of normal incidence. A comparison to ése of positive index
multilayer material is given. While the spectrum of the figsimaterial becomes
progressively more complex with a layer number increase, NHM-containing
multilayers dependence remains more flat, while the suppdesange is wider.
The observed spectral behavior of the NIM-containing $tm&s is a consequence
of marked phase compensation. It suppresses the influemoaltiple reflections
between individual layers and even completely removes & sihgle frequency
corresponding to the fully compensated structure (zersghhift). This results in
much less pronounced side ripples in spectral charadtstist

An increase of the number of layers spreads the band of ssggmieemittance
instead of magnifying and multiplying the ripples like ingitive index material
case. Generally, the interference spectra which are deaisic for the all-PIM
structures are flattened and spread due to phase compenstigicts. This behav-
ior is observed in NIM-containing multilayers regardle$she fact if dispersion is
taken into account or not, since phase compensation oatbigh cases.

Another situation of interest for thermal radiation modifion are non-periodic
filter geometries [119, 117], [118]. Their band structure arore complex com-
pared to periodic ones, which results in appearance of shagnance peaks [16].
Similar to periodic structures, non-periodic NIM multileng also exhibit a strong
influence of phase compensation to transmission [122]4487., Spectral self-
similarity and narrow resonance spectral peaks occursshwias an applicative
potential itself. Also, defect based periodic multilayetith NIM may be used for
emittannce tailoring [120].

7.5 Concluding remarks

We analyzed modification of Planck’s blackbody spectra biople structures in-
corporating NIM. Similar to positive-index photonic crgig to which such struc-
tures are related, they can be used to enhance, suppressmrast spontaneous
emission in all or certain directions by changing the dgnsitmodes. The paper
handles the case of finite structures. Our results show thattgres containing
NIM show larger influence to the thermal radiation spectrinantall-dielectric
PBGs. The suppressed region of thermal radiation is widhet tlae spectral char-
acteristics more flat, i.e. without sharp oscillation tygifor the all-dielectric case.
It can be also seen that spectral properties of the NIM-aainta 1D structures are
less dependent on the angle of incident radiation. The droeepresented here is
of interest in designing other types of non-periodic NIM tilaers for emittance
tailoring. The described approach, in principle, can beegaized to 2D and 3D
PBG materials incorporating NIM media.
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Chapter 8

Emittance tailoring by Cantor
multilayers containing negative
Index metamaterial

Abstract?!

We investigate electromagnetic wave propagation througgrdimensional stacks
of alternating positive and negative refractive index lsyarranged as truncated
pre-fractal Cantor multilayers. We utilized the transfeatnix technique and ap-
plied the Kirchhoffs second law to calculate emittance abhdoaptance modifi-

cation of thick substrate by negative index metamateriatt@amultilayers. We

took into account dispersion and absorptive losses andyaedl both on-axis and
off-axis radiation. We showed that Cantor multilayers fethby inserting nega-
tive refractive index layers as a substitution part in theltitayer lattices enable

tailoring of both spectral and angular dependencies of tanite/absorptance.

1This chapter is adapted from: M. Maksimovic, Z. Jakdimittance and absorptance tailoring
by negative refractive index metamaterial-based Cantaltilayers, J. Optics A: Pure and Applied
Optics , 8 ,3,pp. 355-362, 2006
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8.1 Introduction

The artificial composite electromagnetic structures withustaneously negative
permittivity and permeability are variously dubbed negatindex metamaterials
(NIM) , left-handed metamaterials (LHM), negative phaseiy media [31, 30,
97], etc. Starting from the Maxwell equations with the amprate boundary and
initial conditions and utilizing the general principles efiergy conservation and
causality it can be shown that the refractive index of medih wegative permit-
tivity and permeability is also negative [30, 32]. This iésun various peculiar
properties of the NIM , e.g. the reversal of the Snell's lawtlte negative re-
fraction, reversal of Doppler shift and Cerenkov radiatiett. In contrast to the
positive index media (PIM), in NIM the light propagates ie thpposite direction to
the energy flow and the Poynting vector is anti-parallel towitave phase velocity
vector [30].

A large body of research papers on the NRM has been publishékire-
cent years and many applications have been proposed, onglobeing the so-
called perfect lenses operating beyond the diffractiotit [[@®]. In spite of tremen-
dous technological difficulties to fabricate shorter-wamgth NRM, the operating
wavelengths have been steadily decreasing in recent yednsegative refractive
behaviour has been observed in the optical range [39, 40].

One of the topics of interest in optics of NIM is the distrilout of electromag-
netic modes in NIM-containing multilayers. The role of centional PIM (positive
index material) photonic crystals in modifying thermal ieditbn was researched
first by Cornelius and Dowling [52], then by different teart7, 53, 54, 55, 133].
The influence of NRM to thermal radiation distribution wagdstigated in [116,
117,119],[118],[120]. Important differences in comparigo the all-PIM case oc-
cur as a consequence of the phase compensation, a phenoanisimanin NIM and
resulting in a partial or full removal of phase shift of anattemagnetic wave prop-
agating through a PIM-NIM structure, see Chapter 5 and eafegs therein. We
considered the modification of thermal radiation by pegatstructures contain-
ing NIM in [116]. We showed that NIM-containing structuresncbe used to en-
hance or suppress thermal radiation spectrum considenadtg than all-positive
PBGs. The suppressed region of thermal radiation is witlerspectral charac-
teristics more flat, and less dependent on the angle of intideliation. Another
type of multilayers with interesting and potentially usablectromagnetic spectral
properties are quasi-periodic structures and fractaliladtrs [16, 15, 134, 135].
Due to their structural self-similarity, these show spaategularities in their trans-
mission/reflection, including spectral scalability (théale spectrum of a given
generation repeats scaled as a part of the next generagotrigm) and sequen-
tial splitting (spectral peaks from one generation splib idoublets in the next)
[136]. The strong resonances in spectral dependences abélfraultilayers can
localize light very effectively. Thus they were proposedddferent applications,
including very narrow pass and band reject filters. The pdigito produce mul-
tilayers combining fractality and NIM materials (where baff these could induce
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new and interesting phenomena) naturally attracted tkmtadh of researchers.
NIM metamaterial-containing Cantor sets were analyzed #2] for the lossless
and dispersionless case. Zero-n photonic band gap in Fibbsiacks containing
NIM were investigated in [121]. In this paper we analyze thiguence of multi-
layer filters based on Cantor sets to the thermal radiatismilolition and analyse
its applicability to absorptance-emittance tailoring71118]. In our calculations
we utilize Kirchhoff’s law and apply the transfer matrix rhetl, at the same time
taking into account absorption losses and refractive imtigxersion.

8.2 Theory

Several classes of fractal (quasiperiodic or non-periogierministic) structures
distinguish themselves in dependence on the algorithmfoséide stack construc-
tion. The first class, called the substitutional latticesgenerated’ via a repeated
substitution rule. Such structures(Cantor and Fibonaadtilayers and others)
have self-similar optical transmission spectra, and tkguencies of resonance
peaks form a fractal set [16, 15, 134, 135].

The second large class represents multilayers that aralffag themselves.
They are called multilayer fractal structures because dnegonstructed according
to a known fractal generation algorithm. This algorithm twbe stopped at some
point in order to get a finite structure. Any structure obdalirin this way is not a
genuine fractal, but rather a prefractal [18, 137, 17].

Fractal structures were widely studied in conjunction weiéctronic properties
of quasi-crystals, superlattices and optical multilayjég3, 16, 15, 134, 135]. We
proceed in applying such formal schemes to obtain speeatiifes describing the
influence of phase compensation arising from negativeatfmindex layers.

In this paper we restrict ourselves to the simplest form efsthcalled 'triadic’
Cantor multilayer [136],[138]. We define two refractive ioeks (4, n) and ge-
ometrical thickness valued {, dg) that correspond to two materials (A) and (B).
The Cantor 'triadic’ sequence is defined by the rule

Sy = Sp_1B,Sp—1 for n > 2, So = A, S1 = ABA (81)

whereB,, for the n-th layer denotes the block B with a thicknesg gf = 3"~ 'd.
Thus a triadic Cantor set is formed by splitting an intervaimaterial A (let us
denote it as [0, 1]) into 3 pieces. The center piece (from d/&8) is replaced by
material B. Then each of the remaining intervals of A ([0, B8d [2/3, 1]) is split
into three and the process is repeated from the beginningor€lically, for a full
fractal set the division should continue infinitely longt bureality a truncated set
is retained (a pre-fractal set). One of the reasons is tharddC structure with
a very large number of layers would have a strongly decretitaedmissivity and
thus would become useless from the practical point of vie39]1

A non-periodic multilayer can be in-bound (with the totalckness of the
structure given at the beginning, while one performs itsdsusion to develop
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higher generations) or out-bound (single layer thicknesgivien, one stacks such
strata according to a sequence rule to develop higher geresg[15].

Throughout this paper we used the out-bound form, sincétieisnost practical
for NIM-containing structures (NIM itself has to assume afatructure which is
much larger than the atom scale and thus poses a severedlimibound division).
Moreover, such an approach enables a direct comparisorrgnission optical
spectra for different values of N.

We further define that the constitutive layers have an eqpig¢a thickness,
that of a quarter-wavelength slabgds = npdp = \o/4. Hence, the phase shifts
in the corresponding layers are given by

T
5A(B) = EQCOSHA(B) (82)

whereA = )\yg/\ = wp/w is the normalized frequency a0 are the angles
of propagation for the case of oblique incidence on the taykr.The structure is
deposited on a thick substraté &> \) with an indexng. We assume that the
multilayer is surrounded by a semi-infinite mediug, which in our case for the
sake of simplicity is air or vacuum.

A quarter-wavelength optical thickness of the multilaylabs is chosen to en-
able easier comparison with prior work, since the same ehisiencountered both
in literature on absorptance and emittance tailoring bytqtio crystals, e.g. in
[134, 135] and that on NIM [47, 140]. At the same time, a cldaysical picture is
obtained without a loss of generality, since other thickng®oices would furnish
qualitatively similar spectral behavior.

Figure 8.1 shows the construction principle of structuresyzed in this chap-
ter (not in exact scale). Those are a one-dimensional aystilstructure composed
of NIM and PIM strata arranged as triadic Cantor sets. Se¢@2) and third (G3)
Cantor generations for the in-bound case are shown as ezamplo plasmon
modes in the NRM part interacting with the incident electagmetic wave were
taken into account in this paper. Since the interfaces aenasd to be flat (i.e.
no surface roughness, gratings or similar disturb the pd@smodes), no incident
propagating plane wave can excite surface plasmons regardf the incidence
angle. The reason is that the plasmon modes must have a taogeentum at the
same frequency for all energies considered [31]. Therefoiiefluence of plasmon
modes to the emittance may be expected.

A common practice when studying the spectral propertiepttal multilayers
is to use the well established numerical technique of thestem matrix method
[1, 4], as well as its equivalent counterpart, the recureagetations for transmission
and reflection coefficients [12]. If we assume transfer dliough a multilayer
composed of materials A and B in the form of interface masriee, 5 (where A,B
denote the corresponding A and B layers) and propagationaaafl/, (with p
denoting a layerd(B) or S of a given thickness), then we are able to uniquely
describe the wave propagation through this multilayer bytipiying these two
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b)

Figure 8.1: A multilyer structure composed of NIM and PIMasdr arranged as
triadic Cantor sets; a) 2nd generation (G2), b) 3rd germrqi53), ¢) schematic
presentation of a negative index-positive index mateniarface

matrices.
Mg = 1/2 [1+nB/nA l—nB/nA; l—nB/nA 1+nB/nA] (8.3)

M, = [exp(—idy) 0; 0 exp(+idy)] (8.4)

In the case of oblique incidence the above matrices retansétime form, but
one has to substitute 43y — nacos(f4p)) for corresponding refractive in-
dices in the propagation matrices for both TE- and TM-pakion, andh 4 gy —
na(p) cos(f4(py) for TE-polarization anch 4(g) — na(p)/ cos(f4p)) for TM-
polarization in the interface matrices. The overall tranghatrix for the chosen
structure is given as a product of the interface and the gatien matrices [1, 4].
The transmission and the reflection coefficient of the givteucture follow from
the overall transfer matrix which has the foMh= [mq; mi2; mo; mes| and are
expressed through the formulas
7= 1 andp=|"2p (8.5)
[myq |2 mi

For our NIM layers we assume a frequency-dependent compfeactive in-
dex. In literature on quasi-periodic optical multilayerscemmon practice is to use
frequency independent parameters (e.g. [134, 136]), bealaNIM metamaterial
must be dispersive and lossy in order to preserve causslieyassume that both
effective permittivity and permeability posses the samefo

w? w?

Wiy M ey ®9

wherewpe_(m) are the_ electric _(magnetic) artifici_al plasma frequenc'mxd;]ape_(m)
are electric (magnetic) damping constants (which can beesgpd as a fraction of
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the plasma frequency [31]. We chasg. = wp,, = wp andl'y, =I'y,,, = T'p, thus
the refractive index of the NIM part reads

2
p
n(w) =1 o(w+ Ty (8.7)
We represented the damping coefficient as a fraction of @dsequency, which is
an often met assumption in literature, acceptable even frenexperimental point
of view [4],[5].

In our calculations we considered the case when phase capmm [18]
occurs. If the wave vector through a generalized PIM-NIMictinre isk =
koni(wave number in free space ks = 27/A\ , andn; is refractive index in
materiali (: = A, B), then the phase after the end of the second slab is
kada + kpdp = ko(nada + npdp). If the first layer is PIM 4 > 0, ua = 1)
and the second is NIMn(z < 0,up = —1) the total phase difference it =
kada + kpdp = ko(nada — |np|dp). If the appropriate rati@ 4 /|np| = dp/da
is chosen, the total phase difference between the fronttamtbdck faces of this
two-layer structure becomes exactly zero.

In such a system NIM acts as a phase compensator for bothgaipg and
evanescent waves. It reduces the decay in amplitude of ssamewaves and acts
as an amplitude compensator.

If absorption losses are taken into account, the conditmntte full phase
compensation becomes [107]

¢ = ko(nada — |npldp) + jrpdp (8.8)

and¢ = jrpdp (kp = koIm(np)) for the zero phase difference (i.e. the total
phase difference in lossy material is never equal to zero).

Stacking alternating layers of PRM and NRM materials leada hew type
of photonic band gaps with properties very different frorosd of Bragg gaps,
denoted as the zero-n gap. It arises when the averagedweffesfractive index of
the structure equals zero. It has been demonstrated thaethen gap is almost
invariant with respect to a (Ilength) scale change, and gisesm to randomness as
long as the condition is satisfied [46]. This zero-n gap $tmecis in fact a fully
phase-compensated 1D photonic crystal with impedance ati$msee chapter 5.

In the zero-n structures one can observe the existence @ktismodes and
photon tunnelling modes in the band structure. The disenetges can be utilized
to make a very narrow filters without side lobes.

All negative-n materials that have been made until now aspatsive, which
is in fact a condition imposed by causality [31, 30]. HoweWgrstacking positive-
n material and negative-n material in a layered structuris, always possible to
find (within the range of negative refractive index) suchgfrency that a zero-n
condition will be met for some particular frequency [46].

We consider a system in thermal equilibrium at a given teatpee, its ra-
diation having a Planck’s blackbody spectrum. A non-pecdadultilayer filter
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containing NRM material modifies the spectral emissivitytloé blackbody ra-
diator and the angular distribution of the radiation. Tocuokdte the modifica-
tion by the Cantor structures, we determine first the theemahittance E of the
multilayer. This is done by an indirect method which makes okthe Kirch-
hoff's law of detailed balance, (a material’s emittance hartmal equilibrium is
proportional to its absorptance; for a blackbody they areaBgq The absorp-
tance/emittance is defined by the reflection and transnnissiefficient of the mul-
tilayerasEE = A=1— R — T, see chapter 5 and references therein.

Once the emittance is obtained, its multiplication by themniek power spectrum
gives the power spectrum of the PBG emitter in terms of itsttamge and the
blackbody spectrum

pCantor (w) — ECantorpBB (w) (89)

An expression for the Planck radiation law in NRM media watwied in [128]
and in [116].

8.3 Results and discussion

We considered PIM-NIM non-periodic Cantor-type structui@med by inserting
NIM layers as a substitution part in the multilayer latticBsr comparison, we also
analyzed purely positive-material structures (PIM-PIM)hwthe same geometry.
For the most part of this paper we considered lossy and dispeelIM media.

Figure 8.2 shows as an illustration the results calculateddealized PIM-
NIM Cantor structures without losses and dispersionifgr= 1.5, ng = —3 and
da = Xo/4na,dp = Ap/4npg. It can be seen that the transmission spectra exhibit
spectral scalability which is the well-known property ofigentional positive index
(PIM-PIM) structures. Further it is seen that spectral segjal splitting leads to
forming of multiple narrow transmission peaks.

One can see that the overall width of the multiplets remdim®st unchanged
during splitting. This interesting difference of specredperties between the PIM-
PIM and the PIM-NIM non-periodic structures is in fact calid®y phase com-
pensation that occurs in the second case. Phase companisafieriodic struc-
tures causes ripple suppression, transmission spectenitag and rejection band
widening [43]. A similar effect is the cause for distinctispectral characteristic in
NIM-containing fractal multilayer case. It has been sugggshat in the case of
very large values of N, i.e. an extreme geometrical fragtahe spectral behavior
of PIM-NIM structures in general starts to resemble thathef PIM-PIM fractal
multilayers [122].

All other calculations in this paper are done for lossy argpeisive NRM
where dispersion is taken into account according to (8.7 chbsenp(w) =
1—w?2/w? 4 jTw? /w3 with w, = wy/v/3 andl’ = 0.001w, to facilitate calculation
and at the same time enable comparison with our previoustsdg4d6] without a
loss of generality.
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Figure 8.2: Transmission for Cant@, {1}, N) PRM-NRM multilayer structures:
central part of the spectrum fa¥ = 3 (top) andN = 4, scaled (bottom) for
na=15ng=-3anddy = )\0/471,4, dp = )\3/4713.

Figure 8.3 shows a mean value of the real part of refractiglexnn the NRM-
PRM Cantor composite for different generations for the elispe case. We used
the equation [135]

(Re(n)) = (Njanada + Njpnpdp) / (Njada + N;pdp) (8.10)

wherej is the generation numbeN; 4 = 27 andN; 5 = 37 —27 for average refrac-
tive index calculation in Cantor multilayer. The dispersiof negative refractive
index is shown in the inset of Figure 8.3.

In the case of lossy NIM a true phase compensation does reptake, i.e. an
imaginary part of refractive index always exist. Howevep@ression of the real
part of phase shift significantly influences the interfepepattern, and if losses
are small nearly perfect phase compensation appears. Aggeedr here lossy
and absorptive NRM layers a marked difference can be seeartmrzband gap
condition compared to the lossless case, i.e. no true zbemd gap appears. This
consideration is valid for both periodical and quasi-pdidcsituations.

Figure 8.4 shows spectral transmission and spectral emoétaf a lossy and
dispersive structure. The self-similarity of spectrum isstty removed by disper-
sion and losses. However, although the dependencies ing-8yd are not strictly
self-similar, their patterns reveal a certain degree aftéiaike behavior.

Figure 8.5 shows the spectral absorptance (or emittanceultilayer struc-
tures containing both positive and negative index materibhe suppressed region
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Figure 8.3: Mean value of the real part of refractive indexddantor-type com-
posite containing negative index part for different getierss (from GO to G6).
The NIM dispersion is shown in the inset.
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Figure 8.4: Transmission and emittance of a Cantor-type ARIM multilayer for

generations G2 and G3.
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Figure 8.5: Absorptance (or emittance) for periodic veiGasator-type NIM-PIM
multilayers. Structures with similar numbers of separajeeis are considered to
facilitate comparisorm , = 1.41, ng = —2,ng = 3 +40.3.

of thermal radiation in periodic NIM-containing structusawider, and the spectral
characteristics flatter (there are no sharp ripples tygarapositive index materi-
als) in comparison to the all-positive case. A comparis@ivien between periodic
NIM-containing multilayers and Cantor-type non-periosituctures. A full rejec-
tion band appears in spectral absorptance/emittance iotiestructures, whereas
Cantor-type pre-fractals exhibits sharp and narrow rasoesmthroughout the band
already for such low generation numbers.

Figure 8.8 shows the angular and spectral dependence daeodtof Cantor
sets composed of positive refractive index material (PIIMPHor generations 0 to
3, and Figure 8 shows the same dependence for the NIM-PIM Tasedependen-
cies were calculated for the TE mode for the dispersionleddassy case. Similar
dependencies are obtained for the TM mode (not shown here).

For higher generation Cantor structures, in the all-pasi(PIM-PIM) case a
considerable attenuation is caused by a high number ofdayfaus they become
practically useless for filtering applications [139]. Hawe due to the effect of
phase compensation, in the case of NIM-PIM structures oneisa a much larger
number of layers (higher generations) in Cantor-type §lnd still have a sig-
nificant transmission and significant absorptance/enuédailoring effects. This
is an important difference in comparison to the conventi@lapositive Cantor
structures.
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Figure 8.6: Absorptance (or emittance) for four generatioh Cantor sets for
structures containing dispersive and lossy negative intetamateriak, 4 = 1.41,

ng = 3 4 10.3. Cantor multilayers are a) GO; b) G1; ¢) G2; d) G3. Dispersion
dependence for the metamaterial pagtis shown in inset in Figure 3 (b).

Figure 8.6 shows spectral absorptance for four successmergtions (0 to
3) of Cantor sets for multilayers containing dispersive &8sy negative index
metamaterial with a dispersion dependence as shown in fie¢. iAlthough the
NIM part is dispersive and lossy, a rich absorptance spectsuseen already in
fourth generation. Figure 8.7 shows the spectral absarptém higher generations
(4 to 8), where similar behavior is even more pronounced.

There are several important conclusions to be deduced freradmparison of
Figures 7 and 8. First, the influence of the angle of incidesitess pronounced in
non-periodic structures containing NIM than in the samacstrres with all-PIM
layers. This may lead to more relaxed conditions when utgizegative index
non-periodic multilayers.

Second, angular and spectral flattening and disappear&nipples do appear
in the NIM-containing structures, but one can still noticeach spectral behavior
which could be useful for practical applications. The flaittg is a result of phase
compensation which inevitably occurs under certain camutin NIM containing
structures, but in the case of Cantor-type structures tigs dot remove the useful
properties of non-periodic multilayers.

With an increase of the number of layers more peaks usuadlycéted with
non-periodic structures appear in the spectral charatitriand the spectral dia-
grams become more similar to the conventional non-periodés, but at the same
time the structures remain much less sensitive to incidegieghan the all-positive
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Figure 8.7: Absorptance (or emittance) for four higher getiens of Cantor sets
for structures containing dispersive and lossy negatidexmmetamaterialy 4 =
1.41, ng = 3 4+ i0.3. Cantor multilayers are a) G4; b) G5; c) G6; d) G7.

ones.

Figure 8.10 and Figure 8.11 show directional spectral amitt from different
generations of Cantor multilayers for frequencie&uy = 1. Figure 8.10 shows
the all-positive case. It can be seen that the emittance beray angular depen-
dence, while the spatial distribution becomes progrelsiwere complex with an
increase of the generation number. Contrary to that, in tivd-dbntaining Cantor
multilayers (shown in Figure 8.11) for lower generations #mgular dependence
is much weaker than in the all-positive case. For higher ggioas the directivity
of emittance is much more pronounced and it remains at ndalgame angles in
different generations.

For generations GO and GL1 it can be seen that the angular dkspenof emit-
tance follows a very similar pattern both for NRM-contaipiaind all-positive case.
This is consistent with conclusions from [122]. In all potarrves shown in Fig-
ure 8.10 and Figure 8.11 one can notice the existence of atugp (the range of
suppressed emittance). In the all-PIM case the band staglgwisappears with
an increased angle, while in the NIM-containing structtiie less sensitive to the
propagation angle.

If an additional defect is introduced into the Cantor picfal (not shown
here), an adjustment of its parameters allows for an acetadbring of angular
directivity of emittance (a 'super-directivity generatéailoring) which could find
its practical application. An important conclusion is tihNdM-containing Cantor
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Figure 8.8: Angular and normalized spectral dependencenitfance of Cantor
sets composed of positive refractive index materials (FPIMH for generations 0

to3.ny =141, ng =2,ng = 3 +140.3.

multilayer enable both spectral and angular tailoring eftimal emittance. This is
similar to the periodic case [116].

It is interesting to note another possibility for fractal ltilayers designed in
metallo-dielectric quasi-periodic stacks [135]. The ukpasiodic arrangement of
metallic and dielectric layers generally leads to a deer@ddransmittance with
the addition of more layers. However, it is possible to ageathe layers in quasi-
periodic geometry in order to maintain high levels of traargmcy, even when more
metal is added to the stack [135]. This is important when idenig the 'trans-
parent metal’ designs where it is possible to obtain goausfrarency even in the
spectral regions where the intrinsic behavior of metalsatefs negligible trans-

mission.
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Figure 8.9: Angular and normalized spectral dependencenitance of Cantor
sets composed of positive refractive index materials (IRIME for generations 0
to3.ny =141, ng = —2,ng = 3 +140.3.

8.4 Concluding remarks

Our investigations were dedicated to pre-fractal (noneggés) multilayers of tri-
adic Cantor type containing dispersive and lossy negatifractive index media
applied as filtering structures on the top of thick absorlsngstrate. We ana-
lyzed substrates emittance/absorptance modificatioreddnssuch structures. We
have found that phase compensation in these structureswgptheir usability for
practical applications compared to the all-PIM case. Alee,dependence of the
spectral transmission on waves propagation angle is muetkevahan for con-
ventional quasi-periodic filters. A richer spectrum in at®kly narrow band is
achieved with a smaller number of layers. Spectral frddtaltehavior occurs
for extreme geometrical fractality, but the sequentiaittipd) gives rise to multiple
narrow transmission peaks, which has an applicative patatgelf. The use of
NIM Cantor multilayers enables tailoring of both spectnadl angular dependence
of the emittance/absorptance (thermal radiation antemmetibnality).
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containing Cantor multilayers in TE mode for different geations from GO to G7
and at frequency /wo = 1. ng = 1.41, np = —2,ng = 3 +140.3.
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Summary and outlook

Theoretical research in optics may be divided in two disithecout well connected
general directions. The first deals with developing new @rowing existing math-
ematical models to describe relevant physics. The secand & predict new
phenomena or applications using established models ahditees. This thesis
touches both directions through the study of resonancegticab multilayers.

Optical multilayers are structures periodic in their pntigs in one direction.
They have been longstanding subject of investigation. MNwhess, both funda-
mental and applied research in multilayer optics is stilbariant due to the rel-
evance of multilayer structures for optical systems. Theduction of specific
defects in otherwise periodic configurations enables &fkedtailoring of the op-
tical transmission properties. Equally important, noveltenials give additional
degrees of freedom for the implementation of desired fonetities as well as the
exploration of new physical phenomena. Besides, knowleggeed from an in-
vestigation of multilayer structures may serve as a basith®interpretation and
the qualitative understanding of higher dimensional @btitructures.

We consider the open and finite nature of a specific class dilaydr struc-
tures by directly characterizing their resonance propgniia an investigation of
the quasi-normal mode spectrum. Quasi-normal modes azafaigctions that ap-
pear as solutions of the eigenvalue problem for open stregtuThey are field
profiles representing damped oscillations of the open alptigstem after an initial
excitation is withdrawn.

Specifically, we are interested in the field representatioth ia perturbation
techniques for defect resonances of defect based one-siiomah photonic crys-
tal. First, a recently developed QNM expansion method egglr the solution of
the scattering problem is briefly reviewed to model exampfabe optical defect
microcavities in periodic multilayers. Second, we propasgovel and construc-
tive way of connecting a quasi-normal mode descriptiongdngmission resonance
properties of optical defect microcavities in 1D multilayggructures.

Our approach is meant specifically for approximations ofdbéect induced
transmission modes existing in the bandgap of otherwisedieal structures. It
relies on a variational principle for the field represemtatof the field profiles in
the transmission problem. A field template with a mirror fiattt the most rele-
vant QNMs enables very accurate field and spectral tranEmisgproximations
that agree excellently with the TMM reference. Moreoverthod allows to exam-
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ine directly the resonance nature of the transmission respm cases where it is
very hard to establish this from exact solutions of the tmaigsion problem, such
as provided by the TMM method. The approach quantifies djreloe physical
viewpoint, where the defect cavities are regarded as eattgriorced oscillators.

Furthermore, a variational principle for QNMs allows to empmate the eigen-
frequencies and QNMs of composite multiple cavity struesuyy eigenfrequencies
and QNMs of simpler structures. Hence, a form of coupled mbdery for finite,
open 1-D PC structures is proposed, that uses directly thst raevant QNMs.
Closely related, an expression for a first order perturbatarrection of the com-
plex eigenfrequencies is derived by means of variatiorstiotion.

We analyzed a series of characteristic examples of multgléty structures
and were able to point out characteristic features in theposite structures as
originating from simpler structures. The results suggest the notion of the pho-
tonic crystal molecules can be founded on the analysis of Qdgkttra rigged
with the variational approximation method. Therefore, @¥M analysis offers a
resourceful method for the interpretation of complex pmeaona associated with
the resonance properties in 1-D PC structures. Numeri@hples suggest that
the method is valid for single and multiple cavity strucsine both symmetric and
nonsymmetric layer arrangements and both weak and stramglicgs between
defects.

Further research might explore the application of QNMsysiglon the pho-
tonic crystal heterostructures, composed from differgoé$ of complex unit cells
with different periods. The investigation of the photoniystal molecule con-
cept should include photonic crystal atoms as truncateepeoiodic superlattices.
Furthermore, provided that suitable QNM basis fields can bderavailable by
analytical or numerical means, generalizations to two medlspatial dimensions
could be based on the functional representations of thedmzy domain Maxwell
equations. Alternative formulations of the QNM problemngsthe (first order)
Maxwell equations directly rather than the (second ordexinttholtz equation are
an interesting possibility.

A second class of problems that we address concerns mattissuctures in-
corporating negative index metamaterials, which are adlfcomposites with sub-
wavelength features and negative real part of the refedtisiex of the homoge-
nized structure. We use the Transfer Matrix Method, as medliin chapter 1, as
mathematical method for numerical computations and aisalys

Novel properties of the bandgap structure and transmisgientra can be ob-
tained by the introduction of NIMs in the construction of thnltilayers. Key
mechanism responsible for novel properties is the phaseeosation, the par-
tial or full removal of the phase shift of the wave propaggtthrough a NIM-
containing multilayer.

First we analyzed transmission spectra for aperiodic TMoese multilayers
composed from alternating layers with positive and negat@efractive indices.
In contrast to other non-periodic NIM-containing multieag where self-similar
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and scalable spectra occurred for higher generations, foe-Morse multilayers
these spectral properties do not appear, even in the displess and lossless case.
However, Thue-Morse multilayers exhibit transmissiororesices located at the
midgap frequency of the periodic multi-layer. The field disition at the reso-
nance frequency suggests a common origin in both all-PIMNihd-containing
multilayers connected with the special order of layers. \&maonstrated by direct
computation that the strong material dispersion in the Nlsterials may effec-
tively diminish the influence of the aperiodic order and ti@age compensation
over a large frequency range. Only the prospect of weak matBspersion in the
NIM leads to a potential for the application of the opticaepbmena associated
with aperiodic order.

We apply passive NIM-containing multilayers to tailor theestral and angular
emittance/absorptance distributions of a thick absorlsmlgstrate. On the basis
of the transfer matrix method and of the Kirchhoffs law foetmal radiation, we
analyze realistic finite structures that comprise NIM-eamitg multilayers. Dis-
persion and losses in the NIM part are taken into accounst,Rire analyze finite
periodic multilayers. Our results show that structurest@iomg NIM show large
influence to the thermal radiation spectrum. The suppressgedn of thermal ra-
diation is wider than in usual all-PIM structures, and thecsml characteristics
more flat, i.e. without sharp oscillations typical for thédiklectric case. It can
be also seen that the thermal radiation absorbtance/ecstia less dependent on
the angle of the incident radiation. Second, our invesbgatwere dedicated to
pre-fractal multilayers of triadic Cantor type containidigpersive and lossy neg-
ative index media. As for other NIM- containing multilayete dependence of
the spectral transmission on the spatial angle is much weladwe for conventional
non-periodic multilayers, while the sequential splittigiges rise to multiple nar-
row transmission peaks, which has an applicative poteitsiaf.

The theoretical results suggest that a NIM-containing ihaykr on top of an
absorbing substrate implements the concept of thermahtradiantenna, i.e. a
system that enables both spectral and directional sdlgctif/the thermal power
spectrum emitted by some material object.

Some special features not achievable by conventionalositipe index struc-
tures may arise when the filtering structure containing it and PIM strata
is designed to operate within the zero-n bandgap regimeho&gh, the zero-n
bandgap regime requires additional analysis, in this médgeration it might be
possible to render rejection bands which are wide both ispleetral and the angu-
lar domain, or, alternatively, ultra-narrow pass-bandsangular superselectivity.
With the prospect of the NIMs operating for optical frequescand with control-
lable intrinsic dispersion and absorption properties, Midhtaining structures can
be seen as a promising design choice for thermal radiatiamaas.
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Samenvatting

Theoretisch onderzoek in de optica kan in twee verschidendar duidelijk gere-
lateerde hoofdrichtingen worden opgedeeld. De eerstetlmcid bezig met het
ontwikkelen van nieuwe of het verbeteren van bestaandeuwiige modellen om
relevante natuurkunde te beschrijven. De tweede richt@ichet voorspellen van
nieuwe fenomenen of toepassingen, gebruik makend vanamelstanodellen en
technieken. Dit proefschrift raakt aan beide richtingeordde studie van reso-
nanties in optische multilagen.

Optische multilagen zijn strukturen die periodiek zijn urheigenschappen in
een richting. Ze zijn al sinds lange tijd onderwerp van orndek. Echter, zowel
fundamenteel als toegepast onderzoek naar optica in agdtil is nog altijd van
belang vanwege de relevantie van multilaagsstrukturem gptische systemen.
De introductie van specifieke defecten in verder periodskekturen maakt het
mogelijk de optische transmissie-eigenschappen op &ffectvijze aan te passen.
Net zo belangrijk is het feit dat nieuwe materialen extrgheidsgraden geven
voor zowel het implementeren van gewenste functionaditedtls het verkennen van
nieuwe natuurkundige fenomenen. Bovendien kan de kermisalidt gegenereerd
bij het onderzoek naar multilaagsstrukturen als basisetdisoor het interpreteren
en kwalitatief begrijpen van hoger-dimensionale optisstnekturen.

Wij beschouwen het open en eindige karakter van een specikielsse van
multilaagsstrukturen door hun resonantie-eigenschaplrexkt te karakteriseren
via het onderzoek naar hun 'quasi-normal mode’ (QNM) speirQuasi-normal
modes zijn eigenfuncties die verschijnen als oplossingerhet eigenwaardeprob-
leem voor open strukturen. Dit zijn veldprofielen die de gepte oscillaties verte-
genwoordigen van het open optische systeem nadat een &alijk@nexcitatie is
weggenomen.

In het bijzonder zijn we geinteresseerd in de veldreprasientan en in verstor-
ingstechnieken voor defect-resonanties van een-dimegisidotonische kristallen
gebaseerd op defecten. Als eerste wordt een recent ontdékkgNM expansie
methode, toegepast op het oplossen van het verstrooisigepm, kort bekeken
om voorbeelden van optische defect-microtrilholtes in irlitilaagsstrukturen de
modelleren. Ten tweede stellen we een nieuwe en constreati@nier op om
een verbinding aan te brengen tussen een quasi-normal nesdbrliving en de
transmissie resonantie eigenschappen van optische -aeiercitrilholtes in 1-D
multilaagsstrukturen.
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Onze aanpak is in het bijzonder bedoeld voor benaderingertraasmissie
modes die door een defect geinduceerd worden, gelegen iardigap van verder
periodieke strukturen. Zij is gestoeld op een variatiopeilcipe voor de veldrep-
resentatie van de veldprofielen in het transmissieprohldeem veldsjabloon met
een spiegelveld en de meest relevante QNM’s maakt zeer mauigk veld- en
spectrale transmissiebenaderingen mogelijk, die uistdlovereenkomen met de
TMM referentie. Behalve dit maakt de methode het mogelijkresonantiekarak-
ter van de transmissierespons direct te inspecteren, iallgevwaarin het erg
moeilijk is om deze informatie te extraheren uit exacte sgilogen van het trans-
missieprobleem, zoals verkregen uit de TMM methode. De @agpantificeert
direct het natuurkundige oogpunt, waarin de defect-titéisoals extern gedreven
oscillatoren worden gezien.

Verder staat een variationeel principe voor QNM's het toedemneigenfrequen-
ties en QNM'’s van samengestelde strukturen van meerdévelties te karakteris-
eren met behulp van de eigenfrequenties en QNM'’s van eemeustrukturen.
Dus wordt een vorm van een gekoppelde-mode theorie vooigeindpen 1D PC
strukturen voorgesteld, die de meest relevante QNM’s tigebruikt. Dicht hi-
eraan gerelateerd wordt een uitdrukking voor een eersee\@storingscorrectie
van de complexe eigenfrequenties afgeleid door middel @asiationele restrictie.

We hebben een aantal karakteristieke voorbeelden van eredrilholte struk-
turen geanalyseerd en waren in staat aan te tonen dat késtiéke kenmerken in
de samengestelde strukturen aan eenvoudiger struktutgpriogen. Dit resultaat
suggereert dat het idee van fotonisch kristal moleculeaggdrd kan worden op de
analyse van QNM spectra, opgetuigd met de variationeledagimgsmethode. De
QNM analyse levert dus een vernuftige methode voor de irgtafie van de com-
plexe fenomenen geassocieerd met de resonantie-eigppgchen 1-D PC struk-
turen. Numerieke voorbeelden suggereren dat de methodbikieis voor enkele
en meerdere trilholte strukturen in zowel symmetrischenedssymmetrische or-
dening van lagen en voor zowel zwakke als sterke koppelisgetudefecten.

Verder onderzoek zou de toepassing kunnen verkennen vanalgsa van
QNMs op fotonisch kristal heretostrukturen, gevormd ursegillende types com-
plexe eenheidscellen met verschillende periodes. Hehbesen van het fotonis-
che kristal molekuul concept zou fotonisch kristal atomksnadgekapte niet- pe-
riodieke superroosters moeten bevatten. Bovendien, aanggn dat geschikte
QNM basisvelden beschikbaar kunnen worden gemaakt optestdily of numerieke
manier, zouden generalisaties naar twee of drie ruimétjknensies kunnen wor-
den gebaseerd op de functionaalrepresentaties van de Nergelijkingen in het
frequentiedomein. Alternatieve formuleringen van het QNidbleem direct ge-
bruik makend van de (eerste orde) Maxwellvergelijkingeplaats van de (tweede
orde) Helmholtz vergelijking zijn een interessante mgkle&id.

Een tweede klasse problemen waar we ons op richten houdtbezilgy met
multilaagsstrukturen waarin negatieve-index metameltarizijn opgenomen, wat
kunstmatig samengestelde materialen zijn met componé&tgier dan de golflengte,
waarbij het reele deel van de brekingsindex van de gehonssgde struktuur
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negatief is. We gebruiken de Transfer Matrix Method (TMM)als omschreven
in Hoofdstuk 1, als wiskundige methode voor de numeriekekmingen en anal-
yse.

Nieuwe eigenschappen van de bandgap struktuur en tramsspisstra kun-
nen verkregen worden door introductie van Negatieve Indatekitlen (NIM’s) in
de constructie van de multilagen. Het sleutelmechanismeeatantwoordelijk is
voor de nieuwe eigenschappen is fase compensatie, de wdiflexbf volledige
verwijdering van de fase-verandering van de golf die doarraaltilaag met NIM
propageert.

Eerst hebben we transmissiespectra geanalyseerd vaodieke Thue-Morse
multilagen gevormd van lagen met om en om positieve en regdirekingsindices.
In tegenstelling tot andere niet-periodieke multilaaggstiren met NIM waarin
zelf-gelijkvormige en schaalbare spectra optraden vogetegeneraties, verschi-
jnen deze spectrale eigenschappen niet voor Thue-Morstilageh, zelfs in het
dispersie- en verliesvrije geval. Echter, Thue-Morse itagien vertonen trans-
missieresonanties gelegen op de mid-gap frequentie vaeritedigke multilaag.
De veldverdeling op de resonantiefrequentie suggereerggekjke oorsprong in
zowel volledig PIM multilagen alsook multilagen met NIM,lsenden met de spe-
ciale ordening van de lagen. We hebben door directe bermddatien zien dat de
sterke materiaaldispersie in de NIM’s de invloed van zoveshperiodieke orden-
ing als de fasecompensatie over een groot frequentiegelfiectief vermindert.
Enkel de verwachting van lage materiaaldispersie in het Ml tot een poten-
tieel voor de toepassing van de optische fenomenen geiessibenet aperiodieke
orde.

We passen passieve multilagen met NIM'’s toe op het aanpassede spec-
trale en radiele emittantie / absorptie distributies vandik absorberend substraat.
Op basis van de TMM en van Kirchhoff's wet van warmtestrgliagalyseren we
realistische eindige strukturen die NIM-bevattende rfagén bevatten. Dispersie
en verlies in het NIM deel wordt meegenomen. Ten eerste s@i@y we eindige
periodieke multilagen. Onze resultaten laten zien daksiran met NIM een grote
invioed op het warmtestralingsspectum laten zien. Het windkte gebied van
warmtestraling is groter dan in gebruikelijke volledigvP$trukturen, en de spec-
trale karakteristiek is vlakker, dus zonder de scherpellases die typisch zijn
voor het puur dielectrische geval. Het is eveneens te ziededabsorptie / emit-
tantie van de warmtestraling minder afhankelijk is van dekhean inval van de
straling. Ten tweede waren onze onderzoeken gericht ofrgetal multilagen van
triadisch Cantor type, met dispersieve en niet-verligsyregatieve-brekingsindex
media. Net als in andere multilagen met NIM is de invioed vanruimtelijke
hoek op de spectrale transmissie veel zwakker dan in caowete niet-periodieke
multilagen, terwijl de opeenvolgende splitsing aanlaydyeeft tot meerdere smalle
transmissiepieken, wat op zich al mogelijke toepassingsfth

De theoretische resultaten suggereren dat een multilatfyimiebovenop een
absorberend substraat het concept van een warmtesteailiegse implementeert,
dus een systeem is dat zowel spectrale als directioneletigeékst mogelijk maakt
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van het warmtestralingsspectrum dat uitgezonden wordt e object.

Enkele bijzondere kenmerken die niet haalbaar zijn met exwtmnele puur
positieve-index strukturen kunnen ontstaan wanneer dgdfituktuur die zowel
NIM and PIM lagen bevat is ontworpen om binnen het nul-n bapdggime te
functioneren. Hoewel er extra onderzoek nodig is in hetmblndgap regime,
zou het mogelijk kunnen zijn om in dit werkingstype afwijgsbanden te gener-
eren die zowel in het spectrale als in het ruimtehoekdomegedzijn of, daar-
entegen, ultra-smalle transmissiebanden met super fuimskselectiviteit. Met de
verwachting van NIM’s die werken op optische frequentiesrert selecteerbare
intrinsieke dispersie- en absorptieeigenschappen, kustreikturen met NIM's
worden beschouwd als een veelbelovende ontwerpkeuze \arontestralingsan-
tennes.
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