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Chapter 1

Introduction

ABSTRACT

This chapter briefly reviews parts of the classical electrodynamics necessary for
studying a wave propagation propagation in multilayer structures. In the end of
the chapter outline of the thesis is given.
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Chapter 1. Introduction 1.1. Maxwell equations and. . .

Optics is the branch of physics that describes the phenomenaassociated with
the propagation of light and the interaction of light with matter. According to
the macroscopic, classical Maxwell theory light is an electromagnetic field [1, 2].
Microscopic interaction of light with matter, at a more fundamental level is stud-
ied in quantum optics [3] that replaces the classical theoryfor specific purposes.
However, a very broad range of phenomena in the macroscopic world and many
problems of practical interest can be addressed in the framework of classical elec-
trodynamics [2].

The field of optics usually deals with the behavior of visible, infrared, and ul-
traviolet light. Results and concepts obtainable for frequency ranges can be trans-
ferred to other parts of the spectrum, depending on the available material properties
for these frequencies and an technological aspects. Therefore, general models that
can be used in any frequency range to describe phenomena and specific devices are
of particular interest.

Multilayer structures, that are periodical in their optical properties in one di-
rection, have been known for a long time and represents more than a century old
subject of investigation [1, 4]. Most common applications are efficient Bragg mir-
rors and various filter structures, which are standard partsof many optical systems
[5, 6].

In recent years, artificial structures with spatial periodicity in more than one di-
mension became popular. These structures known as PhotonicCrystals can create
frequency ranges in which propagation of light is prohibited [7, 8, 9]. Ideally, full
3D structures suppress light propagation for all polarizations and directions.

Nevertheless, both fundamental and applied research in multilayer optics is
still important due to relevance of multilayer structures for optical systems. By the
introduction of specific defects in otherwise periodic configurations one can very
effectively engineer the optical transmission properties. Present research efforts are
directed towards the exploration and utilization as resonant cavities in applications
such as lasers, light-emitting diodes, channel drop filters, etc [6, 7, 4, 10, 11].
Also, knowledge gained from an investigation of multilayerstructures may serve
as a basis for the interpretation and the qualitative (sometimes even quantitative)
understanding of higher dimensional photonic crystal structures.

1.1 Maxwell equations and electromagnetic fields

The electromagnetic field is fully described by the Maxwell equations, accompa-
nied by appropriate constitutive relations and boundary conditions [1]. The time
dependent Maxwell equations read

∇× E = −∂B
∂t

, (1.1)

∇× H =
∂D
∂t

+ J, (1.2)

8



Chapter 1. Introduction 1.1. Maxwell equations and. . .

∇ · D = ρ, (1.3)

∇ · B = 0, (1.4)

whereE is the electric field,H the magnetic field,D the electric displacement,B
the magnetic induction,ρ the free charge density andJ the current density. These
coupled equations describe all macroscopic electromagnetic phenomena where the
primary sources of the electromagnetic fields are free charges and currents.

For wave propagation phenomena considered in optics, mediawithout free
charges and conduction currents are most relevant. Withρ = 0 andJ = 0, the
Maxwell equations become homogeneous

∇× E = −∂B
∂t

, (1.5)

∇× H =
∂D
∂t

, (1.6)

∇ · D = 0, (1.7)

∇ · B = 0. (1.8)

In this thesis we are dealing with electromagnetic waves, a special type of
solutions of the Maxwell equations. These time-varying electromagnetic fields
carry energy and are decoupled from the primary sources. Among all possible
time-dependencies we are considering time-harmonic solutions, where all fields
are of the formA(r , t) = Re

{
A(r)e−iωt

}
, for frequencyω. The source free

frequency domain Maxwell equations are

∇× E = iωB, (1.9)

∇× H = −iωD, (1.10)

∇ · D = 0, (1.11)

∇ · B = 0. (1.12)

To complete the description of the electromagnetic system additional constitu-
tive relations for the field quantitiesE, H, D, B must be specified to incorporate the
material properties.

1.1.1 Materials and constitutive relations

A set of constitutive relations is required to complete the Maxwell equations. In
general the constitutive relations involve a set of constitutive parameters and a set of
constitutive operators. The constitutive parameters may be as simple as constants
or they may be tensors, while the constitutive operators maybe linear and integro-
differential or may involve nonlinear operations on the fields [1, 2, 12].

If the constitutive parameters are spatially constant within a certain region of
space, the medium is said to be homogeneous within that region, when this is

9



Chapter 1. Introduction 1.1. Maxwell equations and. . .

not the case the medium is inhomogeneous. When the constitutive parameters
are constant with time the medium is said to be stationary andif they are time-
dependent, the medium is non-stationary.

In the case of constitutive operators that involve time derivatives or integrals,
the medium is said to be temporally dispersive, while in caseof space derivatives or
integrals involved, the medium is spatially dispersive. Moreover, the constitutive
parameters may be dependent on other physical properties ofthe material, such as
temperature, mechanical stress, etc.

In general, the constitutive parameters may be anisotropicand thus have to be
expressed as tensors [1, 2, 12]. We address only isotropic materials, with scalar
constitutive parameters, permeability and permittivity.

In vacuum the constitutive relations are simply

D = ǫ0E, and B = µ0H, (1.13)

whereǫ0 = 8.854 · 10−12F/m andµ0 = 4π · 10−7A/m are the free space permit-
tivity and permeability. These two fundamental physical constants are related to
the speed of lightc = 1/

√
ǫ0µ0 = 2.998 · 108m/s. All quantities are expressed in

SI units, which is the case throughout this thesis, excluding the parts where certain
quantities are normalized to become nondimensional.

Linear, isotropic and non-dispersive media are described by the constitutive
relations

D = ǫ0E + P = ǫ0(1 + χe)E = ǫ0ǫrE (1.14)

B = µ0H + M = µ0(1 + χm)H = µ0µrH (1.15)

whereP = ǫ0χeE andM = µ0χmH are the polarization and magnetization vectors
related to the electric and magnetic fields by the dimensionless electric and mag-
netic susceptibilitiesχe andχm. The constants of proportionality are called relative
electric permittivityǫr = 1 + χe and relative magnetic permeabilityµr = 1 + χm.
They may depend on the position for inhomogeneous materials.

In the first three chapters of this thesis, we analyze structures made from dielec-
tric materials with piecewise constant values of the permittivity ǫ in certain regions
of space. They are non-magnetic withµr = 1 and transparent, having negligible
losses in the considered frequency range. This simplified model, still covers a large
range of practical situations in multilayer and integratedoptics.

Further, we analyze in the subsequent parts of the thesis structures that incorpo-
rate so called negative index metamaterials. Broadly speaking, these are materials
that have both negative permittivity and permeability. We consider isotropic meta-
materials where permittivity and permeability remain scalar quantities with linear
relationship in corresponding constitutive relations. Both losses and dispersion can
be present.

Here, we outline only the general notion on a dispersive properties of the
medium, i.e. a medium in which the relations betweenD and E as well asB
andH are given by dynamic rather then instantaneous relations [2]. The physi-
cal origin of these relations is a time delay occurring between the influence of the
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Chapter 1. Introduction 1.1. Maxwell equations and. . .

electromagnetic field and the local macroscopic response ofthe materials in which
the field exists. As a consequence a time delay exists betweencause and effect,the
fluxesD(t) (B(t)) are superpositions of the effects of fieldsE(t′) ( H(t′)) at all
earlier timest′ < t. These relations are given in the form of convolutions

D(r , t) = ǫ0

(
E(r , t) +

∫ t

−∞

χe(r , t − t′)E(r , t′)dt′
)

, (1.16)

B(r , t) = µ0

(
H(r , t) +

∫ t

−∞

χm(r , t − t′)H(r , t′)dt′
)

. (1.17)

After Fourier transform, the frequency domain relations are

D(r , ω) = ǫ(r , ω)E(r , ω) (1.18)

B(r , ω) = µ(r , ω)H(r , ω) (1.19)

whereǫ = ǫ0(1 + χe(r , ω)) andµ = µ0(1 + χm(r , ω)) are all now frequency
dependent material response functions permittivity and permeability.

The principle of causality is implicit in (1.16),(1.17) because the integrals are
taken up to timet only, which represents the notion that the physical fields can not
depend on the future state of media. A direct consequence of causality e are the
Kramers-Kronig relations, i.e. the expressions that relate the real and imaginary
parts of the permittivity (permeability) to each other through a Hilbert transform
pair [1, 2]. Some details on specific types of frequency dispersion are addressed in
chapter 5 in connection with the description of the negativeindex metamaterials.

If absorption losses are present in the media, those can be modeled by complex
permittivity and permeability

ǫ = ǫre + iǫim, and µ = µre + iµim. (1.20)

Here, imaginary parts arise due to induced polarizations and magnetizations asso-
ciated with the presence of absorption [2].

Maxwell equations are obviously invariant with the substitution

E → H, H → E, ǫ → −µ, µ → −ǫ. (1.21)

This symmetry has an important consequence that can be quiteconvenient for cer-
tain types of problems.

1.1.2 Interface conditions

The practically most interesting problems involve situations where the material
properties vary in space and have discontinuities. Then oneassociates the discon-
tinuities with appropriate surfaces that separate regionsin which the differential
equations can be solved and the fields are well defined. Uniqueness of the solu-
tions in adjoining regions requires a specification of the tangential fields on each

11



Chapter 1. Introduction 1.1. Maxwell equations and. . .

Figure 1.1: Interface con-
ditions between two me-
dia of different material
properties

side of the adjoining surface [2]. The integral form of the Maxwell equations may
be used to derive interface conditions that are both physically meaningful and ex-
perimentally verifiable [1, 2].

For an interface between two arbitrary media without free electric charges and
currents these conditions read

n12 × (E2 − E1) = 0, (1.22)

n12 × (H2 − H1) = 0, (1.23)

n12 · (D2 − D1) = 0, (1.24)

n12 · (B2 − B1) = 0. (1.25)

Heren12 is a unit vector normal to the interface. This is the most convenient form
for the waves propagation phenomena considered in this thesis.

1.1.3 Poynting theorem and energy conservation

Using Maxwell equations (1.5)-(1.8) and the vector identity ∇· (E×H) = H ·∇×
E − E · ∇ × H we can derive relation

∇S+

(
E

∂D
∂t

+ H
∂B
∂t

)
= −JE, (1.26)

where
S = E × H. (1.27)

is called the Poynting vector.
For linear, non-dispersive and lossless media an energy density of the electro-

magnetic field stored in the material can be defined as

W =
1

2
ǫE · E +

1

2
µH · H. (1.28)

12



Chapter 1. Introduction 1.1. Maxwell equations and. . .

By evaluating the second term on the left side of (1.26), we find the relation

∂W

∂t
+ ∇ · S = −J · E, (1.29)

which in integral form reads

d

dt

∫

Ω
WdΩ +

∫

Ω
J · EdΩ = −

∮

∂Ω
S∂Ω. (1.30)

This is one form of the Poynting theorem which in this case canbe interpreted
as an energy conservation law: the total power entering a volumeΩ through the
surface∂Ω increases the field energy inside the volume as is lost through absorp-
tion processes in the medium. In lossless and non-dispersive media the vectorS
can be interpreted as the power flux density carried by the electromagnetic wave,
effectively defining the direction of the power flow across the boundary.

However, this interpretation is valid only in the case of non-dispersive materi-
als. When dispersion and losses are present the interpretation of the stored energy
in the material looses its foundation [2]. In general, the power flow interpretation
of the Poynting theorem has to be carefully examined for eachparticular situation
[2].

1.1.4 Wave equation

The wave equation is a second-order differential equation,obtained from the orig-
inal system of coupled equations.). Taking the curl of the (1.5) and using (1.6), we
obtain the second wave order equation for the electric and magnetic fields

µ∇× µ−1∇× E + ǫµ
∂2E
∂t2

= 0, (1.31)

ǫ∇× ǫ−1∇× H + ǫµ
∂2H
∂t2

= 0. (1.32)

In the frequency domain when time harmonic fields with frequency ω are consid-
ered wave equations become

µ∇× µ−1∇× E − ω2ǫµE = 0, (1.33)

ǫ∇× ǫ−1∇× H − ω2ǫµH = 0. (1.34)

For homogeneous media, where the electric field satisfies∇E = 0 equations (1.31)
and (1.32) become

∇2E − ǫµ
∂2E
∂t2

= 0, ∇2H − ǫµ
∂2H
∂t2

= 0 (1.35)

In the frequency domain these become Helmholtz equations

∇2E + ω2ǫµE = 0, ∇2H + ω2ǫµH = 0. (1.36)
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Chapter 1. Introduction 1.2. Wave propagation in. . .

Frequently it is convenient to write the physical quantityǫµ that appears in the
wave equation in the alternative form

ǫµ =
n2

c2
(1.37)

wherec = 1/
√

ǫ0µ0 is velocity of light in vacuum andn2 = ǫrµr is dimensionless
quantity known as the index of refraction or refractive index. Note that the refrac-
tive index represents a derived, formal construct that doesnot appear directly in the
Maxwell equations.

Particular care is required with the definition of the (sign of) the refractive
index, in cases where the permittivity and permeability arecomplex quantities,
with not necessarily positive real parts. The sign of the square root in the expression
for refractive index is determined according to the following rule:

Re(n) < 0 if Re(ǫ) < 0 and Re(µ) < 0,
Re(n) ≥ 0 otherwise.

(1.38)

The term “negative index metamaterials” refers to situations where the first alterna-
tive of the rule (1.38) applies. The standard model for the absorption in the material
is obtained by taking the complex form of the permittivity and permeability in cor-
responding materials [1, 12]. Then, for the complex material response functions,
permeabilityǫ(ω) = ǫre(ω)+ iǫim(ω) and permittivityµ(ω) = µre(ω)+ iµim(ω),
the complex refractive indexn(ω) = nre(ω) + inim(ω) is given by [13]

n =
√

|ǫ||µ|exp

(
i

2

[
arccot

(
ǫre

ǫim

)
+ arccot

(
µre

µim

)])
(1.39)

Where, in the presence of dispersion all of quantities are understood to be fre-
quency dependent. For more details see chapter (5) and references therein.

1.2 Wave propagation in one-dimensional optical systems

Central subject of this thesis are electromagnetic multilayer structures in which
permittivity and permeability are spatially varying in onedirection. We consider
specific models and methods for solving wave propagation problems that involve
general multilayer structures under external excitation by incoming waves [4, 5, 8].

1.2.1 Plane waves in a linear, homogeneous isotropic media

We are interested in the general behavior of EM waves in the frequency domain,
so we seek simple solutions to the homogeneous Helmholtz equation

(
∇2 + k2

)
E(r , ω) = 0, (1.40)

that governs the EM fields in source-free regions of space. Here

k2(ω) = ω2ǫ(ω)µ(ω) (1.41)

14



Chapter 1. Introduction 1.2. Wave propagation in. . .

is the propagation constant. In a rectangular Cartesian coordinate system equation
(1.40) reduces to three scalar equations for each componentEx, Ey, Ez of the elec-
tric field. These equations may be solved by separation of variables; solutions of
(1.40) can be presented as

E(r , ω) = E(ω)eik·r (1.42)

for wave vectork = [kx, ky, kz ] and vector amplitude spectrumE(ω) . The wave
number is the magnitude of the wave vector|k|2 = k2 = k2

x + k2
y + k2

z . Solution
(1.42) represent propagating plane waves, with planes as the spatial surfaces over
which the phase of the field is constant.

When lossy materials with complex permittivity and permeability are consid-
ered, the wave vector becomes complex

k = kre + ikim. (1.43)

If the real and imaginary parts of the wave vector are collinear, (1.42) describes a
uniform plane wave, otherwise the waves are nonuniform. Certain issues related
to the proper determination of the complex wave vector arisewhen materials are
dispersive and lossy. This is the case for the wave propagation in negative index
metamaterials. Some specifics are discussed in chapter 5.

1.2.2 Scattering problems and transfer matrix method

For the propagation of the electromagnetic waves through planar layered struc-
tures made of the piecewise constant, homogeneous, and isotropic media without
sources, the vectorial wave equation reduces to two uncoupled scalar equations
[12]. One distinguishes two types of optical fields: For Transverse Electric (TE)
waves the electric field is perpendicular to the plane spanned by the direction of
propagation of the incident wave and its projection on the layer interfaces, while
for Transverse Magnetic (TM) waves the magnetic field is perpendicular to that
plane of incidence. Cartesian coordinates are introduced as in Figure 1.2 to de-
scribe the propagation of plane waves through the multilayer stacks, where the
x-axis is parallel to the layer interfaces, while thez-axis is perpendicular to the
stack surface, such that the coordinatesx andz span the plane of incidence.

For TE waves the electric fieldE = (0, Ey , 0) is linearly polarized in they-
direction. Time-harmonic fieldsE(r , t) = E(r )e−iωt with real angular frequency
ω are considered. Then under external time harmonic, TE polarized excitation the
field in the medium is described by the scalar functionEy(x, z) (where we drop the
subscripty to simplify the notation). With this choice of polarizationthe Maxwell
equations reduce, after stratification∂y = 0, to the Helmholtz equation for TE
waves (

∂2

∂x2
+ µ(z)

∂

∂z

1

µ(z)

∂

∂z
+

ω2

c2
ǫµ

)
E(x, z) = 0. (1.44)

15



Chapter 1. Introduction 1.2. Wave propagation in. . .

Figure 1.2: An inhomogeneous multilayer structure (i.e. a stratified medium) with
piecewise constant,z-dependent permittivityǫ and permeabilityµ. The structure is
invariant along thex- andy-directions. Oblique incidence of plane electromagnetic
waves is considered, with incidence angleθ.

Analogously, the principal magnetic componentH of time harmonic TM waves
with y-polarized magnetic fieldH(x, z, t) = (0,H, 0)(x, z)e−iωt satisfies the Helmholtz
equation (

∂2

∂x2
+ ǫ(z)

∂

∂z

1

ǫ(z)

∂

∂z
+

ω2

c2
ǫµ

)
H(x, z) = 0 (1.45)

Fourier transform along the layer interfaces separates thex- andz-dependent parts
of the principal fields, such that these can be represented inthe form

E(x, z) = E(z)e±ikxx, andH(x, z) = H(z)e±ikxx. (1.46)

where thex-componentkx of the wave vector now plays the role of a parameter
that is defined by the angle of incidence (cf. Figure 1.2). Dueto the invariance in
thex-direction equations (1.44) and (1.45) become ordinary differential equations

(
µ(z)

∂

∂z

1

µ(z)

∂

∂z
+

ω2

c2
ǫµ − k2

x

)
E(z) = 0, (1.47)

and (
ǫ(z)

∂

∂z

1

ǫ(z)

∂

∂z
+

ω2

c2
ǫµ − k2

x

)
H(z) = 0. (1.48)

Note that these equations are identical for positionsz inside the layers with constant
material properties. Differences between the polarizations manifest only through
different interface conditions at the boundaries between the layers. For TE waves,
the quantities

E,
1

µ

∂E

∂z
(1.49)
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should be continuous across the interfaces, while continuity of

H,
1

ǫ

∂H

∂z
(1.50)

is required for TM polarized waves. Note that the following steps are valid also for
complex permittivity and permeability.

Analytic solutions of the Helmholtz equation for the multilayer structure of
Figure 1.2 in thej-th layer can be written

Fj(z) = Aje
ikjz(z−zj−1) + Bje

−ikjz(z−zj−1) (1.51)

whereF replaces theE−field in the case of TE polarization and theH−field for
TM polarization.kjz is thez-component of the local wave vector in layerj, defined
by

k2
jz =

ω2

c2
ǫjµj − k2

x, (1.52)

for vacuum speed of lightc.
We consider a situation when a plane waveF0(x, z) = A0eikxx+ik0zz with

given amplitudeA0 is incident onto the multilayer structure, coming from a semi-
infinite, homogeneous (conventional, transparent dielectric) medium, with wave
vectork0j = (kx, 0, k0z). Its x- andz-componentskx = (n0ω/c) sin θ andk0z =
(n0ω/c) cos θ define / are defined by the incidence angleθ, wheren0 =

√
ǫ0µ0 is

the local refractive index of the input medium.
The local wave vector inj-th layer can be expressed as

kjz =
ω

c
nj

√

1 − n2
0 sin2 θ

n2
j

(1.53)

inside the layerz ∈ [zj−1, zj ] with local permittivity ǫj and permeabilityµj, and
the refractive index defined bynj =

√
ǫjµj.

With the abbreviationηj = µj for TE polarization andηj = ǫj for TM waves,
the continuity conditions (1.49, 1.50) for the interface between layersj andj + 1
can be written as

Fj(zj) = Fj+1(zj), and
1

ηj

∂Fj

∂z
(zj) =

1

ηl+1

∂Fj+1

∂z
(zj). (1.54)

These conditions lead to a system of equations that relates amplitudes in neighbor-
ing layers through the step matrix

(
Aj

Bj

)
=

1

2





(
1 +

sj+1

sj

)
e−ikjzdj

(
1 − sj+1

sj

)
e−ikjzdj

(
1 − sj+1

sj

)
e+ikjzdj

(
1 +

sj+1

sj

)
e+ikjzdj




(

Aj+1

Bj+1

)
,

(1.55)
with the abbreviationsj = kjz/ηj and where the separate propagation of the di-
rectional waves throughout the layers of thicknessdj = zj − zj−1 according to
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equation (1.51) has already been incorporated. Ordered multiplication of these
matrices connects amplitudes in each layer of the structure. If the amplitude trans-
fer is carried out over the full layer stack, one arrives at a system matrix of the
form (

A0

rA0

)
=

(
m11 m12

m21 m22

)(
tA0

0

)
. (1.56)

Herer andt are the reflection and transmission amplitude coefficients.Assuming
that the input and the output regions consists of the conventional dielectric ma-
terials without absorption, we define the transmittance as the ratio of the optical
output and input power [1] (intensity ratio for observationplanes parallel to the
layer surface)

T (ω, θ) =
nN+1 cos θN+1

n0 cos θ0

∣∣∣∣
1

m11

∣∣∣∣
2

(1.57)

and the reflectance as the ratio between the reflected and the incident power

R(ω, θ) =

∣∣∣∣
m21

m11

∣∣∣∣
2

. (1.58)

Here the incident angleθ is related to the angleθN+1 in the output medium through
the Snell’s law

nj sin θj = nj+1 sin θj+1, (1.59)

wherenj andθj are refractive indices and (formal) angles in corresponding layers.
This formal expression is valid for any type of material and even for NIMs, see
chapter 5 and references therein.

According to the energy conservation law, when material arelossy, a quantity
called absorptance can be defined as

A = 1 − R(ω, θ) − T (ω, θ). (1.60)

It represents the portion of the incident optical power thatis absorbed by the struc-
ture and transformed, for example, to the thermal energy in the material.

1.2.3 Periodic multilayers

Consider an multilayer arrangement of two different materials with{ǫA, µA} and
{ǫB , µB}, denoted asA andB respectively as depicted in Figure 1.3, with periodic
permittivity and permeability

ǫ(z + Λ) = ǫ(z), and µ(z + Λ) = µ(z). (1.61)

with periodΛ = a + b. This is a traditional model for periodic optical structures
that we will use as a basic model in this thesis [1, 4]. The structure possesses dis-
crete translational symmetry in contrast to the continuoustranslational symmetry
of homogeneous media [8].
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Figure 1.3: An periodic (binary) multilayer structure withpiecewise constant and
periodic,z-dependent permittivityǫ and permeabilityµ. The structure is invariant
along thex- and y-directions. The thicknesses of layers A and B area and b,
respectively. The unit cell thicknessΛ, represents period of the structure.

The wave propagation is described by equations (1.47) and (1.48) for both
polarizations; the solutions are periodic according to theBloch-Floquet theorem
[8, 9, 4]. Thus, a field in the periodic multilayer can be represented in the form

F (z + Λ) = eiKBΛF (z). (1.62)

whereKB is the Bloch’s wave number. The transfer matrix (1.55) connects ampli-
tudes in the adjacent layers

(
Aj

Bj

)
=

(
T

(j)
11 T

(j)
12

T
(j)
21 T

(j)
22

)(
Aj+1

Bj+1

)
, (1.63)

while local amplitudes separated by one period are related as

(
Aj

Bj

)
=

(
T

(j)
11 T

(j)
12

T
(j)
21 T

(j)
22

)(
T

(j+1)
11 T

(j+1)
12

T
(j+1)
21 T

(j+1)
22

)(
Aj+2

Bj+2

)
, (1.64)

owing to the Bloch-Floquet theorem and equation (1.62), as
(

Aj

Bj

)
= e−iKBΛ

(
Aj+2

Bj+2

)
. (1.65)

Due to the periodicity the amplitudes in the(j)−th and the(j + 2)−nd layer are
the same and equation (1.65) can be written as the homogeneous system

(
T11 − eiKBΛ T12

T21 T22 − eiKBΛ

)(
Aj+2

Bj+2

)
=

(
0
0

)
. (1.66)

Nontrivial solution exits only if determinant of the systemmatrix T = TjTj=1 is
identical to zero:

T11T22 − T12T21 − eiKBΛ(T11 + T22) + ei2KBΛ = 0. (1.67)

19



Chapter 1. Introduction 1.2. Wave propagation in. . .

The determinant of the unit cell transfer matrix isdet(T) = 1 which can be seen
by examining the relation

detT = T11T22 − T12T21 = detT(j)detT(j+1). (1.68)

Using the form (1.55) of the transfer matrix it follows that

detT(j) =
sj+1

sj
, and detT(j+1) =

sj+2

sj+1
. (1.69)

which leads to
detT =

sj+1

sj

sj+2

sj
= 1, (1.70)

where the conditionsj+2 = sj holds due to the periodicity. Finally, equation (1.67)
simplifies to

cos(KBΛ) =
1

2
(T11 + T22) =

1

2
trT. (1.71)

Equation (1.71) connects values of the Bloch wave vector andfrequency of the
field through so called dispersion relation

ω = ω(KB , kx). (1.72)

If all material properties, permeability and permittivityare real, thenKB ∈ R,
for given frequencyω ∈ R if and only if | cos(KBΛ)| < 1. Then waves can
propagate in the medium without attenuation. A range of frequencies where this
is satisfied is called the pass-band or the transparency band. On the other hand
there may be range of frequencies for given structure where| cos(KBΛ)| > 1,
depending on the right-hand side of (1.71). Then solution ofthe (1.71) forω ∈ R
are characterized by complex valued Bloch wave vectorKB ∈ C. These ranges of
frequencies where propagating waves are forbidden are called the bandgaps or the
stop-bands.

In fact, the suppression of wave propagation for some range of frequencies
is an intrinsic property of all periodic media. Electromagnetic waves in periodic
media with a frequency in to the bandgap are of the evanescenttype, i.e waves ex-
ponentially attenuate in amplitude while propagating through medium. In contrast
to these evanescent (bandgap) waves, propagating waves sometimes are named ex-
tended, due to fact that the energy of the waves is distributed over whole structure.
An analogy with the electronic band structure in solid statephysics arises and the
name Photonic Crystals follows form it [8].

Equation (1.71) can be applied to the analysis of more complex unit cell’s (e.g.
with more then two layers in the unit cell and in arbitrary arrangement) by con-
sidering the trace of the corresponding transfer matrix [8]. Periodic repetition of
the complex unit cell gives rise to the bandgap structure. Sometimes this method,
called supercell method, is used for the analysis of finite (non-periodic) structures
where the assumption is made that the artificial periodization does not change the
optical response substantially [7, 9].
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Another approach to show the physical origin of the bandgap phenomena is of
the multiple scattering description of the wave propagation [1],[12],[8]. It amounts
to identifying conditions under which waves interfere constructively or destruc-
tively in such a way to support or reject wave propagation forcertain frequencies.
Although, this point of view is physically and intuitively very appealing, it is not
easily tractable in general [12],[8].

1.2.4 Periodic multilayer with defects

Looking at periodic media from a symmetry point of view, the bandgap may be
seen to arise from the discrete translational symmetry of the periodic media [8].
As it turns out, for the frequencies inside the bandgap wave propagation is sup-
pressed and all waves are of the evanescent type. However, breaking the symmetry
of the periodic media may give rise to specific types of propagating waves with
the frequencies belonging to the bandgap range. A common wayof breaking the
translational symmetry is to locally change the thickness or the material properties
in specific layer [8]. The emerging periodic parts of the Photonic Crystal enclos-
ing the defect site act as frequency selective mirrors for Fabry-Perot type resonator
formed by the defect layer. With a suitable adjustment of thedefect parameters,
a so called defect modes may be supported by the structure. These are localized
states with concentration of the energy in the vicinity of the defect in contrast to
the extended states of the pass bands in the periodic structure. They possess real
Bloch wave vector in the frequency range of the bandgap of theunderlying periodic
structure [4, 8, 14].

In this thesis, we are interested in the characterization and utilization of these
defect resonances arising in finite structures. They are revealed as transmission
resonances, i.e. high values of transmittance with the frequencies of the maximum
of the transmittance belonging to the bandgap.

1.2.5 Deterministic non-periodic multilayers

The studies of the wave propagation in multilayers in general regard two different
extremes: perfectly periodic media (such as photonic crystals) and absolutely ran-
dom multilayers. However, there are structures that behavemuch like disordered
ones, but are constructed according to a deterministic procedure. These are called
non-periodic deterministic (NPD) media. They possess the properties of both pe-
riodic and random structures and also have some distinct features not found in
periodic structures [15, 16, 17].

Several classes distinguish themselves, depending on the algorithm used for
the stack construction. The first class, called substitutional lattices is generated via
a repeated substitution rule. The second large class represents NPD multilayers
that are fractal by themselves. They are called multilayer fractal structures be-
cause they are constructed according to a known fractal generation algorithm [18].
This algorithm has to be stopped at some point in order to get afinite structure.
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Therefore, any structure obtained in this way is not a genuine fractal, but rather a
one-dimensional pre-fractal.

The spectral transmission and reflection properties of quasi-periodic and frac-
tal structures were widely studied in conjunction with the topics such as quasi-
crystals, electronic superlatices and optical multilayers [15, 16]. Some of these
specially designed multilayers have statistically self-similar optical transmission
spectra and the frequencies of the resonance peaks form a fractal set [15, 16]. Op-
tical multilayers are specifically interesting for studying classical wave propagation
phenomena in NPD media due to easy fabrication. Many applications of optical
NPD structures have been proposed as well [19].

1.3 Open structures and quasi-normal modes

An open (leaky) optical structure (or more specifically an open resonator) can be
seen as an inhomogeneity in a finite domain separated from theexterior by a partly
open (transparent) boundary surface. Such an open structure loses energy to the
exterior via radiation.

In multilayer structures resonances are manifested as a large transmission re-
sponse of the system to the external excitation. More importantly, for specific finite
multilayer structures, bandgaps can occur in the transmission response (here these
are frequency ranges with very low transmission in contrastto the bandgaps of in-
finite periodic structure), and of the many resonances only those in the bandgaps
(the defect modes) have high Q factors to be of practical interest. Then such a
transmission resonance is associated with a purely real frequency. However, the
notion of the resonance introduced in this way is somewhat obscure and hard to
make precise in all cases of practical interest, see chapter3 and 4.

As an alternative model for examining properties of multilayer structures an
appropriate eigenvalue problem for the characteristic resonant frequencies (eigen-
values) and associated field profiles (eigenfunctions or modes) of open structures
can be considered [20, 21]. This approach is used in other branches of physics
associated with wave scattering on finite structures [22, 23].

The simplest model of interest in optics, is a multilayer structure withz−dependent
permittivity (refractive index)ǫ(z) = n2(z) and constant permeabilityµ(z) = 1.
This model describes an all-dielectric multilayer. Assuming a harmonic time de-
pendenceE(z, t) = Q(z)e−jωt, the electric field for the TE-mode in the interior
x ∈ (L,R) is governed by the Helmholtz equation:

∂2
zQ +

ω2

c2
n2(z)Q = 0. (1.73)

Viewing the finite multilayer as a passive, open optical structures with transpar-
ent boundaries which permit the leakage of energy to the exterior, outgoing wave
boundary conditions

(
∂zQ + i

ω

c
ninQ

)

z=L
= 0, and

(
∂zQ − i

ω

c
noutQ

)

z=R
= 0. (1.74)
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are used. This constitutes an eigenvalue problem, further in the thesis refereed to
as QNM problem, where the frequencyω is the complex eigenvalue and the field
profile Q(z) is the eigenfunction (Quasi-Normal Mode) [20, 24]. Note that this
eigenvalue problem is nonlinear because the eigenvalue appears in the boundary
conditions explicitly [25, 26].

Figure 1.4: Open (leaky) optical multilayer structure withenergy outflow to the
exterior.

Commonly complex eigenfrequencies and QNMs for this type ofstructures can
be found by solving appropriate transcendental equation for complex zeros. This
transcendental equation can be obtained from the corresponding transfer matrix
upon continuation in the complex plane [23]. Methods for solving this type of
problem are numerous and there is a substantial literature devoted to this, a brief
review follows in chapter 2.

A more general method for solving the QNM eigen problem can bebased on a
suitable variational formulation. With a suitable discretization of the relevant func-
tional, for instance by the Finite Element method, an algebraic nonlinear eigenvalue
problem is obtained, see [25, 26] and references therein.

In finite structures, without dissipative losses due to absorption in the mate-
rial, the main difference between open and closed optical resonators is that the
resonant frequencies of closed resonators are real, while those of open resonators
are complex [22, 20, 21]. In formal mathematical language, this difference arises
because instead of Dirichlet or Neumann boundary conditions for the closed res-
onator, a radiation condition, allowing only outgoing waves, has to be imposed.
Eigenfrequencies appear as discrete infinitely countable set of complex numbers
[22, 20, 21]. However, QNMs (eigenfunctions) are unboundedfor x → ±∞, so
they can not be normalized in the usual fashion over the wholespatial domain.

Open system do not satisfy energy conservation and the corresponding oper-
ators are no longer Hermitian. In general, eigenfunctions of non-Hermitian oper-
ators do not necessarily belong to a complete orthogonal basis, but rather form a
set of non-orthogonal functions which may or may not be complete [27, 28, 29].
Decomposing a field on this set, even in the case of some form ofcompleteness
is not straightforward, and the usual tools involving field decomposition cannot be
used [12].

Subject of our investigation are resonance phenomena in one- dimensional op-

23



Chapter 1. Introduction 1.4. Negative index metamaterials

tical microcavities that are realized as defects in periodic dielectric multilayers,i.e
structures with piecewise constant refractive index distribution. Suitable boundary
conditions on finite domain can be applied in such a way that the properties of the
open system are preserved [26].

When the time dependent problem of the energy leakage from such an open
structure is considered, QNMs specify the field patterns in which the leaky opti-
cal structure would oscillate naturally after an initial excitation is withdrawn, thus
representing damped oscillatory solutions of the wave equation. Then, QNMs and
associated complex eigenvalues can be viewed as a proper means for solving the
problem of energy leaking out of open structures, see [24] and references therein.
Some results concerning this problem are reviewed in chapter 2.

The main aim of the approach described in chapters 2, 3 and 4 isto show that,
by knowing a set of complex eigenfrequencies and associatedQNMs for a given
structure, we can reconstruct the frequency response of thestructure to arbitrary
excitation and/ or arbitrary perturbations of some parameters of the structure. Par-
ticularly the field representation is of major interest. Theopen, leaky nature of the
optical system is directly incorporated.

1.4 Negative index metamaterials

Negative (refractive) index metamaterials are artificial composites, characterized
by subwavelength features and a negative real part of the refractive index [30, 31].
The negative real part of the refractive index arises in a frequency range where the
real parts of both permittivity and permeability are negative [32, 30, 31]. Metama-
terials are usually made of ordered or random arrangement ofelementary ”parti-
cles” that furnish designed effective electromagnetic response functions [33]. An
important feature is that these elementary electric and magnetic ”particles” are of
subwavelength dimensions with respect to the target wavelength range. Then an in-
cident wave does not resolve these subwavelength features of the metamaterial but
rather ”sees” the effective medium properties arising fromthe collective interaction
of building blocks [34, 35]. In this way, The Maxwell equations are complemented
with the appropriate macroscopic constitutive relations incorporating the homoge-
nized ”effective” response functions for both electric andmagnetic properties [36].
A striking consequence of the negative index metamaterialsis that many of the ba-
sic laws of electromagnetism are reversed from those in ordinary media: reversal
of the phase velocity, negative refraction, reversed Dopler effect, etc [32, 30, 31].

Negative index metamaterials seen as spatially homogeneous samples dictate
that the phase velocity of an optical wave is in the opposite direction to the direc-
tion of the energy flow, i.e. Poynting vector, giving rise to the namebackward-wave
mediaor backward-phase velocity media. Also electric, magnetic field and prop-
agation wave vector form the left-handed system which consequently leads to the
nameleft-handed media. Although the terminology is not standard, the name that
encompasses the fundamental property and is mostly used in the latest literature
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is Negative Refractive Index Metamaterialsor Negative Index Metamaterial; we
choose one of these terms further in the thesis.

The physics, the basic operating principles, and many applications of NIM are
already proven or made available in the microwave range, see[37, 33, 38] and refer-
ences therein. Following remarkable results in the microwave range extended effort
has been directed toward the realization of negative index metamaterials operating
in the optical frequency range [39, 40, 41]. As initial results are very promising, it
can be expected that technological advances might eventually enable efficient low
loss NIMs for application in optics.

The possibilities offered by periodic all-dielectric or metal-dielectric photonic
bandgap media might be greatly expanded by the introductionof electromagnetic
metamaterials with negative index. Apart from many proposed applications and
phenomena associated with subdiffraction imaging, see [31] and references therein,
multilayers consisting of alternating dielectric (positive index material or PIM) and
NIM layers offer new possibilities for the Photonic BandgapEngineering not at-
tainable by structures incorporating ordinary materials.Some of these new prop-
erties are a widening of the bandgap and flattening of the spectral transmission
and reflection from finite structures [42, 43, 44], while at the same time the angu-
lar dependence of the transmission spectra in NIM-containing multilayers seem to
be much weaker. Also, extended photonic bandgap engineering with NIM might
give rise to omnidirectional bandgaps [44] and the so-called zero-n bandgap which
appears when alternating PIM- NIM layers are stacked in sucha way that the av-
eraged refractive index is equal to zero [45, 46]. Some results suggest that these
properties exist in periodic [46], quasi-periodic [47] andaperiodic structures [48].

Our interest in resonances of the multilayer structures is partially directed to-
ward understanding the spectral transmission properties in multilayer structures
containing NIM. In this respect, we address in chapter 5 and 6the transmission
spectra of periodic and non-periodic multilayers composedfrom positive and neg-
ative index metamaterials.

1.5 Thermal radiation and multilayer structures

The electromagnetic radiation emitted from the material bodies and originating
from heating processes inside the material is called thermal radiation [49, 50]. It
represents the physical process associated with the microscopic processes of elec-
tromagnetic radiation emission induced by electron transitions in atoms, phonon
transitions associated with molecular rotational and vibration modes and crystal
lattice oscillations. In terms of wavelengths, it covers the ultraviolet spectrum, the
visible light spectrum and the infrared spectrum [51, 11].

The physical nature of processes associated with the thermal radiation can be
described only by complementary pictures taking into account both quantum and
classical physics [3, 51, 11]. However, in our considerations quantum processes
associated with interaction of radiation and matter are handled implicitly. Because

25



Chapter 1. Introduction 1.6. Outline of the thesis

we are interested in phenomena associated with electromagnetic waves represent-
ing thermal radiation, we treat them classically: with macroscopic Maxwell equa-
tions and macroscopic material response functions permittivity, permeability and
refractive index.

One of the topics of interest in optics is tailoring emittance/absorptance by
changing the distribution of electromagnetic modes [13]. The theoretical founda-
tion of the modification of thermal radiation by the photonicbandgap materials
has been outlined in [52]. Thermal radiation is suppressed at frequencies inside
the PBG, and enhanced at the frequencies of transmission resonances. In this way
a spectral redistribution of thermal power is achieved. This can be interpreted
in terms of a modification of the photonic density of modes within the photonic
bandgap material and thus altering the thermal radiation spectrum.

On the practical side, the design of thermal sources with their emittance en-
hanced in a narrow solid angle has been of interest in the lastfew years [53, 54,
55, 56]. Selectivity in both frequency and directionality of these systems might be
seen as effective antenna like behavior; a design goal dictated by expected applica-
tions in thermo-photovoltaic systems, infrared imaging systems, etc. Usually these
systems are implemented with all-dielectric or metal-dielectric multilayer coatings
on top of an absorbing substrate to enhance or suppress thermal emission from the
substrate. This configuration enables thermal radiation control via the multilayer
coatings applied as spectral and angular filters. This is readily implemented by
the available thin-film technologies and it has been proved practically feasible to
obtain antenna-like behavior for thermal sources in the IR range.

The computational approach used in this thesis relies on theKirchhoff law
for thermal radiation and the transfer matrix method. Kirchhoff law establishes
an equality between absorptance and emittance for all frequencies, polarizations
and propagation directions for an absorbing material object in thermal equilibrium
[49, 50, 52]. This task is less complex than the direct computation of emission
processes but still gives correct result in most of the casesof interest.

Advances in the technology of nanostructured materials maylead to the fab-
rication of materials with optical properties not readily found in nature, e.g. of
NIMs for the optical range, see [13] and references therein.This offers new pos-
sibilities for the device design required for thermal radiation control. Further in
this thesis, we investigate passive NIM-containing multilayers applied to tailor the
spectral and angular emittance/absorptance distributions of an emitting substrate,
see chapters 7 and 8.

1.6 Outline of the thesis

In this thesis we are interested in resonance phenomena in optical multilayer struc-
tures. First, we direct our attention to the development of means for modeling
multilayer structures as open systems. We adopt a quasi-normal mode descrip-
tion for both field profiles and transmission/ reflection responses. Specifically, we
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are interested in the field representation and in perturbation techniques for defect
resonances of defect based one-dimensional photonic crystal.

In chapter 2, we introduce the fundamental notion of a resonance in a sim-
ple Fabry-Perot resonator, seen as closed system with hard boundaries, and also
as an open system under external excitation and as a QNM problem. Then, the
method for solving QNM problems for general multilayer structures is addressed.
A recently developed method of a QNM expansion for solution of the transmission
problem is briefly reviewed and applied to model examples of the optical defect
microcavities in periodic multilayers. This method has itsfoundation in the spe-
cific pseudo-inner product introduced for projecting fieldsonto the QNM basis and
in the specific completeness property for QNMs. Finally, time-independent QNM
perturbation theory is considered. The existing theory from literature is briefly
addressed along with a novel variational QNM perturbation theory.

In chapter 3, we specialize to resonances inside the bandgapof periodic multi-
layer mirrors that enclose the defect cavities. We investigate field approximations
and characterization of the spectral transmission using variational principle and
field template with only the most relevant QNMs accompanied by a specific mir-
ror field. The method is applied to symmetric and non-symmetric structures with
single and multiple defects.

Following the successful application of the variational principle for the field
representation of defect resonances, chapter 4 deals with coupled optical defect
cavities realized in finite one-dimensional Photonic Crystals. Here, single defect
structures (photonic crystal atoms) can be viewed as elementary building blocks for
multiple-defect structures (photonic crystal molecules)with more complex func-
tionality. The QNM description links the resonant behaviorof individual PC atoms
to the properties of the PC molecules via eigenfrequency splitting. A variational
principle for QNMs permits to predict the QNMs and the complex eigenfrequen-
cies in PC molecules starting with a field template incorporating the relevant QNMs
of the PC atoms. Further, both the field representation and the resonant spectral
transmission close to these resonances are obtained from a variational formulation
of the transmission problem using a template with the most relevant QNMs. The
method is applied to both symmetric and nonsymmetric singleand multiple cavity
structures with weak or strong coupling between the defects.

A second class of problems that we address concerns multilayer structures in-
corporating negative index metamaterials. The Transfer Matrix Method, as out-
lined in chapter 1, is technique applied for this purpose.

Chapter 5 starts with a brief review of some basic propertiesof the negative in-
dex metamaterials. Then, we address some novel properties of the bandgap struc-
ture and transmission spectra obtained by the introductionof NIM in the construc-
tion of the infinite and the finite multilayers. A second part of chapter 5 reviews
some basics concerning thermal radiation. Specifically Planck’s and Kirchhoff’s
law are addressed. Finally, we introduce the basic concept of thermal radiation
antenna, i.e. a system that enables both spectral and directional selectivity of the
thermal power spectrum emitted by some material object.
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Chapter 1. Introduction 1.6. Outline of the thesis

Chapter 6 deals with the optical transmission spectra of aperiodic Thue-Morse
multilayers composed from alternating layers of media withpositive and negative
refractive index. We investigate transmission resonancesand the field distributions
associated with them for finite structures. The angular dependence of the trans-
mission spectra and the robustness of the transmission resonances with respect to
the phase shift modulation are investigated. Non-dispersive and lossless, as well as
realistic dispersive and lossy materials are considered.

The design of multilayer coatings applied to enable spectral and directional
control over thermal radiation from emitting substrates has been of interest in the
last years. In chapter 7 we investigate modification of the thermal radiation power
spectrum in periodically ordered multilayers containing negative index metamate-
rials. Both on-axis and off-axis radiation are analyzed.

An additional degree of freedom in the design of thermal radiation antennas
may be expected when more general multilayer designs are used. In chapter 8 we
investigate wave propagation through one-dimensional stacks of alternating posi-
tive and negative refractive index layers arranged as truncated (pre-fractal) Cantor
multilayers. Dispersion and absorptive losses for both on-axis and off-axis radia-
tion are taken into account.

Brief remarks on possible directions for future research concerning the topics
discussed in chapters 2-8, conclude this thesis.
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Chapter 2

Resonances and quasi-normal
modes

Abstract

Subject of our investigation are resonance phenomena in optical cavities realized
as defects in one-dimensional structures. Upon viewing thecavity as a passive
open system with intrinsically leaky behavior due to the open boundaries where
waves are permitted to leave the structure, the cavity can becharacterized in terms
of complex eigenfrequencies and quasi-normal modes (eigenfunctions). Our aim
is to predict the response of the structure to the external excitation and/or internal
perturbations, solely based on the knowledge of eigenfrequencies of the QNMs
supported by the structure. A specific two-component formalism and a related
QNM expansion method is briefly reviewed and applied to modelexamples of the
optical defect microcavities in periodic multilayers. Also, a time-independent QNM
perturbation theory is considered.
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Chapter 2. Resonances and quasi-. . .

Specific subject of our investigation are resonance phenomena in optical cavi-
ties realized as defects in multilayer structures. Resonance phenomena are usually
associated with a large response of an system to some external excitation. The
response is determined to a large extent by intrinsic properties of the system re-
gardless of the excitation. One of the features of all realistic optical structures is
that they are open, non-conservative systems. Apart from possible material absorp-
tion losses, radiation may escape from the system carrying energy to the exterior
through open boundaries.

For simplicity consider an optical structure with a piecewise constant refractive
index distributionn(x) within the finite domainx ∈ (0, L) and an exterior with
constant refractive indexn0. The nature of the boundaries is such that they permit
leakage of the energy to the outside, i.e. the structure is said to be open (leaky)
[20].

A first model of interest is an optical structure without external excitation with
only the outgoing waves in the exterior. The wave propagation is described by the
scalar wave equation for the electric field

∂2E(z, t)

∂x2
− n2(x)

c2

∂2E(x, t)

∂t2
= 0 (2.1)

with associated outgoing wave boundary conditions
(

∂E

∂x
− n0

c

∂E

∂t

)

x=0

= 0,

(
∂E

∂x
+

n0

c

∂E

∂t

)

x=L

= 0, (2.2)

wherec is speed of light in vacuum and exterior refractive indexn|x=0 = n|x=L =
n0. These boundary conditions can be simply checked by splitting the general so-
lution of the wave equation in the homogeneous medium in forward and backward
traveling waves with respect to the orientation of coordinate axis [1]. Such a simple
form of the boundary conditions (2.2) requires that the exterior is homogeneous. If
a harmonic time dependence for the electric fieldE(x, t) = Q(x)e−iωt is assumed,
then (2.1) becomes the Helmholtz equation

∂2Q(x)

∂x2
+

n2(x)

c2
ω2Q(x) = 0 (2.3)

with outgoing wave boundary conditions
(

∂Q

∂x
+ iω

n0

c
Q

)

x=0

= 0,

(
∂Q

∂x
− iω

n0

c
Q

)

x=L

= 0. (2.4)

Equation (2.3) together with (2.4) represents an eigenvalue problem for the com-
plex frequency as eigenvalue and associated Quasi-Normal Mode as eigenfunc-
tion. The eigenvalue problem is nonlinear because the eigenfrequency appears in
the boundary conditions explicitly. We are interested in nontrivial solutions with
negative imaginary part Im(ωk) < 0 of the eigenfrequency. When considered in
the time domain these fields are damped oscillating solutions, where the damping
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Chapter 2. Resonances and quasi-. . .

is controlled by Im(ωk) < 0 . The imaginary part of the frequency is related to
the energy decay and closely related to the Q-factor of the cavity, see [22, 26] and
references therein. The eigenfunctions are unbounded on the real line blowing-
up at spatial infinity. Solutions appear always in pairs(ωk, Qk) and (−ω∗

k, Q
∗

k)
[20, 57]. The QNMs are in fact the natural modes of the opticalstructure that rep-
resent damped oscillations of the field after an initial excitation is withdrawn, see
[22, 58] and references therein.

Note that the present 1D eigenvalue problem involves local boundary condi-
tions. However, in higher dimensions this is not possible and the radiation con-
dition permitting only outgoing waves can be approximated only in the form of
nonlocal boundary conditions using Dirichlet-to-Neumannmaps [26, 59]. Com-
mon computational approaches then involve local approximations, e.g. by means
of perfectly matched layers [22, 60].

As a second model we consider the structure under an externalexcitation by an
incoming wave. The wave equation (2.1) is accompanied by a transparent influx
boundary condition at the sidex = 0 of the structure where a given incidennce
wave impinges:

(
∂E

∂x
− n0

c

∂E

∂t

)

x=0

= b(t),

(
∂E

∂x
+

n0

c

∂E

∂t

)

x=L

= 0, (2.5)

where

b(t) = 2

(
∂Ein

∂x

)

x=0

= −2
n0

c

(
∂Ein

∂t

)

x=0

. (2.6)

represents the incoming wave. This boundary condition is obtained by noting that
the field at the boundaryx = 0 can be decomposed as the sumE = Es + Ein,
whereEs is the scattered wave component satisfying outgoing wave b.c.’s andEin

is the given incoming wave. Then taking the derivative with respect to the spatial
variable and the time variable at the position of the boundary x = 0 and eliminating
Es the inhomogeneous boundary condition follows.

For harmonic time dependence the same Helmholtz equation (2.3) is obtained,
now with inhomogeneous boundary conditions

(
∂E

∂x
+ iω

n0

c
E

)

x=0

= b(ω),

(
∂E

∂x
− iω

n0

c
E

)

x=L

= 0. (2.7)

For a harmonic incident wave of the formEin = Aincexp(ωn0

c x − ωt) the inho-
mogeneity isb(ω) = 2iω n0

c Ainc with given real frequencyω ∈ R and given input
amplitudeAinc given. This is the transmission problem as introduces in chapter 1.

Our aim is to predict the response of the structure to external excitation and/or
parameter perturbations, solely based on the knowledge of eigenfields and eigen-
frequencies of the QNMs supported by the cavity.
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2.1 Quasi-normal modes and multilayers

The QNM problem for a multilayer structure with a homogeneous exterior can be
solved by means of adaptation of the transfer matrix method outlined in section
(1.2.2). If only outgoing waves are allowed in the exterior,the incoming wave
amplitudeA0 is set to zero. Then the equation for the overall transfer matrix (1.56)
becomes (

0
AL

)
=

(
m11 m12

m21 m22

)(
AR

0

)
. (2.8)

whereAR andAL are the amplitudes of the left and right travelling outgoingwaves.
Equation (2.8) can be satisfied with nontrivialAL, AR if

m11(ω) = 0, for ω ∈ C, (2.9)

i.e. solutions are found by analytic continuation of (1.56)into the complex plane
[23]. In principle one would have to expect infinitely many discrete solutions with
different algebraic multiplicity, but in the case with homogeneous exterior these
solutions are in fact simple zeros [22]. Note, that this description has an equivalent
form that connects the incoming to the outgoing waves via so called scattering ma-
trices [10]. Then complex eigenfrequencies may be interpreted as complex poles
of the scattering matrix [6]. Alternatively, they are polesof the reflection and the
transmission transfer functions obtained by the multiple scattering method [12].
In fact, this is a standard interpretation of the complex eigenfrequencies [6]. To
actually find complex solutions of (2.9) we use a standard Newton type method
[61].

2.1.1 Resonances and QNMs of single dielectric slab

If a closed resonator model is considered, fields are identical to zero at the bound-
aries [2], and if there are no internal losses due to materialabsorption, such sys-
tem allows storing of electromagnetic energy forever. Mathematical model of
this system is an eigenvalue problem of the Sturm-Liouvilletype [62, 63, 64].
Eigenfrequencies are real and the eigenfunctions form a complete orthonormal set
[62, 2, 12]. Then, an arbitrary field distributions inside the cavity can be decom-
posed into these eigenfunctions (normal modes), while resonances are identified
with the corresponding real eigenfrequencies and the normal modes of the system
are standing waves with nodal points at the boundaries [62, 2, 12].

When the optical resonator is open, i.e. the boundaries of the cavity allow en-
ergy leakage into the exterior situation becomes more complicated. As an example
we look at a simple 1D Fabry-Perot type resonator structure with two semitrans-
parent mirrors [4]; in our setting this can be a slab of dielectric material (refractive
index nS and thicknessLS) separated from the vacuum environment (refractive
indexn0).

We consider the externally driven system, when waves are incident onto the
structure and can be either reflected or transmitted. This isa transmission problem,
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Chapter 2. Resonances and quasi-. . . 2.1. Quasi-normal modes and. . .

such that we seek for solutions both in the exterior and interior with specified input
amplitude and real frequency of the incoming wave. Here a resonance is usually
understood as a frequency where the transmission coefficient attains maximum a
value. According to a transfer matrix solution (1.2.2), it is easy to show after some
algebra that the transmittance can be written as

T (ω) =
(1 − r2)2

1 + r4 − 2r2 cos(2ω
c nsLs)

(2.10)

wherer = ns−n0

ns+n0
is the interface amplitude reflection coefficient. The transmission

resonancesT (ωtr) = 1 occur when the frequency attains values with

cos(2
ω

c
nsLs) = 1, or ωtr = p

πc

nsLs
, for p = ±1,±2,±3, ... (2.11)

In fact this can be interpreted as a condition for constructive interference, i.e.
round-trip of the wave in the resonator is an integer multiple of the wavelength
[1, 4].

If we require only outgoing waves in the exterior, then due tothe same simple
transfer matrix representation the system of equations canbe satisfied only for
complex frequencies

ωq = p
πc

nsLs
− i

c

nsLs
ln(1/r) for p = ±1,±2,±3, ... . (2.12)

Note that the same result can be obtained if one find complex poles of (2.10).
When the thickness of the slab is set to be quarter-wavelength Ls = λ0

2ns
for tar-

get wavelengthλ0 = 2πc/ω0, the transmission resonance frequencies and eigen-
frequencies reads

ωtr = p(2ω0) and ωq = p(2ω0) − i
2ω0

π
ln(1/r). (2.13)

Note that the transmission resonance frequencies and real parts of the complex
eigenfrequencies are identical. Therefore, incident waveis perfectly transmitted
if the frequency of the incoming wave is identical to the realpart of a complex
eigenfrequency. However, if a multilayer is considered, the real parts of the eigen-
frequencies and the transmission resonance frequencies are not equal in general,
although they may be very close [65]. We may expect in more complicated struc-
tures that a resonant transmission occurs when the frequency of the incident wave
is close to the real part of a complex eigenfrequency.

2.1.2 QNMs and defect resonances in multilayers

As an example we compare a periodic and a defect structure coded as(HL)8H
and(HL)42H(LH)4 respectively. HereH andL denote high and low index lay-
ers with refractive indicesnH = 3.42 andnL = 1.45. The thicknesses are cho-
sen as quarter-wavelength with respect to the target wavelength λ0 = 2πc/ω0 =

33



Chapter 2. Resonances and quasi-. . . 2.1. Quasi-normal modes and. . .

−4 −3 −2 −1 0 1 2 3 4
−10

−1

−10
−2

−10
−3

Re (ω/ω
0
)

Im
(ω

/ω
0)

A)

 

 

−4 −3 −2 −1 0 1 2 3 4
−10

−1

−10
−2

−10
−3

−10
−4

−10
−5

Re (ω/ω
0
)

Im
(ω

/ω
0)

B)

 

 

Periodic

Defect

Bandgap

Defect
resonance

Figure 2.1: Complex eigenfrequencies for periodic multilayer A) and defect mul-
tilayer B).

1.55 µm. Defect structure has a central layer of half-wavelength thickness. All
materials are assumed to be nonmagnetic.

Solutions of equation (2.9) are the complex eigenfrequencies depicted in Fig-
ure 2.1. For the periodic multilayer they appear to be arranged throughout complex
plane in a specific pattern with distinctive strips being without eigenfrequencies as
shown in Figure 2.1 A). These regions (gray patches) seem to be a reminiscence
of the bandgap structure associated with the infinite periodic structure. Indeed, the
edge frequencies of the band-stop frequency range for the finite structure under
external excitation (not shown here) are close to the real parts of edge eigenfre-
quencies, i.e those closest to the strips in Figure 2.1 A). The infinite countable set
of e eigenfrequencies may be partitioned into the sets of eigenfrequencies having
the same imaginary, with their real parts being integer multiple of 2ω0. Similar ob-
servations also have been made in [65]. For the defect structure eigenfrequencies
are present inside the ”bandgap” region as can be seen in Figure 2.1 B). This is
expected from the known property that in the spectral transmission of this structure
a transmission resonance appears inside the bandgaps [4, 8,66].

Owing to the similar structure and the arrangement of the complex eigenfre-
quencies in the complex plane for the periodic and defect structures, same relation
between these two situations might be expected. Let us startwith the structure
(HL)4χH(LH)4, whereχ ∈ (1, 2), meaning that forχ = 1 structure is peri-
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Figure 2.2: A) Eigenfrequencies for the periodic and defectmultilayer B) Shift of
the band edge eigenfrequency with a quasi-continuous increase of the width of the
central layer C) QNMs for band edge eigenfrequency (periodic multilayer) and D)
defect eigenfrequency (defect multilayer) .

odic and forχ = 2 it becomes a defect structure. Corresponding eigenfrequencies
inside the first band are depicted in Figure 2.2 A). By changing the parameterχ
in a given range and by computing eigenfrequencies in each step we are able to
track the eigenfrequencies in the complex plane. We observethat the bandedge
eigenfrequencyωP shifts inside the bandgap and in fact turns into the defect eigen-
frequencyωD with very small imaginary part and with it’s real part in the middle
of the bandgap, as shown in Figure 2.2 B).

Corresponding QNMs for these two extremal cases are shown inFigure 2.2 C)
and D) for eigenfrequenciesωP andωD respectively. We observe a drastic change
of the QNMs profile. Whereas the QNM forωP appears to be almost equally
distributed throughout the whole structure, the one associated withωD is localized
in the vicinity of the defect layer, with noticeable amplitude enhancement. These
properties are similar to those of field profiles associated with transmission and
defect resonances [4] as well as those of pass-band states and defect states, i.e.
extended and localized states in the infinite structure [8].

The eigenvalue problem for an infinite structure with periodic boundary con-
ditions leads to a spectrum with in general both discrete andcontinuous parts,
characterizing structure in terms of bandgaps [8]. The pattern observed above in
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the QNM spectrum of the present finite structure, suggests anan analogues. Some
results concerning the aymptotics of the QNMs spectrum if a structure is infinitely
extended were reported for 1D problems dealing with scattering resonances and
bandgaps of finite and infinite periodic potentials in quantum mechanics, see [67]
and references therein.

2.2 Two-component formalism and QNM expansion

The full set of complex eigenfrequencies and QNMs supportedby an arbitrary
multilayer structure on the one hand, and the spectral transmission and the field
profiles for the structure under external excitation on the other hand may be seen
as two ways to describe the properties of the optical system.Consequently, us-
ing QNMs and the corresponding eigenfrequencies as a means for the solution of
the transmission problem seems to be a reasonable way to connect these two de-
scriptions. For this task a certain QNM expansion method that has been proposed
recently [24] may be used. The method is based on the theory outlined in [68]
and the two-component formalism described in [69], [70]. This method has been
adapted recently for 1D photonic crystal structures, see [65, 71, 72] and references
therein.

We review some results concerning specifically approximations of the spectral
transmission and the associated fields in the transmission problem. Examples for a
single defect 1D photonic bandgap structure with comments on some silent features
of the outlined method are given below.

Time domain The problem described by the second order wave equation (2.1)
can be expressed in terms of two first order in time equations,provided that two
components are introduced: the field variableE(x, t) and a component often called

conjugate variable, defined aŝE(x, t) = n2(x)
c2 ∂tE(x, t). The full description is

then given via the vectorE = [E Ê]T . If we introduce an operatorH defined as

H =

(
0 c2

n2(x)

∂2
x 0

)
, (2.14)

then the time evolution equation reads

∂tE = HE, (2.15)

and is accompanied by outgoing wave boundary conditions
(

∂E

∂x
− c

n0
Ê

)

x=0

= 0,

(
∂E

∂x
+

c

n0
Ê

)

x=L

= 0. (2.16)

The time evolution equation in the two-component form (2.15) with (2.16) is equiv-
alent to the second order wave equation [73].
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Frequency domain For harmonic time dependence in both componentsE(x, t) =
Q(x)e−iωt, the QNM problem reads

HQ(x) = (−iω)Q(x) (2.17)

with boundary conditions
(

∂Q

∂x
− c

n0
Q̂

)

x=0

= 0,

(
∂Q

∂x
+

c

n0
Q̂

)

x=L

= 0. (2.18)

Note that this eigenvalue problem is linear because the eigenvalue is not explic-
itly present in the boundary conditions. Two component eigenfunction is given

asQ(x) = [(Q(x) − iω n2(x)
c2

Q(x)]T whereQ is the same as the solution of the
problem (2.3), (2.7).

2.2.1 Pseudo-inner product, orthogonality and completeness

Let us introduce bilinear map for the two-component functions with the following
form

〈E(1), E(2)〉 =

∫ L

0

(
E(1)Ê(2)+E(2)Ê(1)

)
dx+

n0

c

(
E(1)E(2)|x=0+E(1)E(2)|x=L

)
.

(2.19)
The time-evolution operatorH is symmetric under this bilinear map within the
space of functions satisfying outgoing wave boundary conditions. The symmetry
subsequently leads to the orthogonality of the QNMs and establishes a projection
technique for QNM expansions suitable for open optical structures, see [24] and
references therein.

Note that this bilinear map involves two components, i.e. both field and the
time-derivative of the field.1 Also, the bilinear map explicitly incorporate bound-
ary data. Therefore in the frequency domain bilinear map maybe difficult to apply
for arbitrary fields. This is one of the reasons to use the formalism first in the
time-domain and then apply a Fourier transform to obtain thefrequency domain
description. Note that (2.19) is not positive definite.

Although this seems to be a complication if (2.19) is used with arbitrary func-
tions, benefit is that due to the symmetry of the time evolution operator and the
orthogonality of the QNMs the bilinear map may be used for an effective projec-
tion onto QNM basis. Therefore it may be seen as pseudo-innerproduct [27, 28].
Some relations of this bilinear map with the usual inner product have been consid-
ered in [74, 75].

Symmetry With the bilinear map (2.19) the operator (2.14) is symmetric in the
space of functions satisfying the outgoing wave boundary conditions

〈E(1),HE(2)〉 = 〈HE(1), E(2)〉. (2.20)

1When considered in the frequency domain, for QNMs that satisfy (2.17), in a single component
form it also involves the frequency explicitly in (2.19).
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To show this property, let us start from the left-hand side of(2.20)

〈E(1),HE(2)〉 =

∫ L

0
dx
(
(E(1)∂2

xE(2) + Ê(1) c2

n2(x)
Ê(2)

)
+ St (2.21)

where

St =
n0

c

((
E(1) c2

n2
0

Ê(2)
)
x=0

+
(
E(1) c2

n2
0

Ê(2)
)
x=L

)
. (2.22)

Next, let us apply partial integration twice in the first integral (2.21) and use bound-
ary conditions (2.16) to obtain

〈E(1),HE(2)〉 =

∫ L

0

(
E(2)∂2

xE(1) + Ê(2) c2

n2(x)
Ê(1)

)
dx + S1 + S2 + St. (2.23)

where
S1 =

(
E(1)∂xE(2)

)
|L0 = −St (2.24)

and

S2 = −
(
E(2)∂xE(1)

)
|L0 =

n0

c

((
E(2) c2

n2
0

Ê(1)
)
x=0

+
(
E(2) c2

n2
0

Ê(1)
)
x=L

)
(2.25)

Finally, we get

〈E(1),HE(2)〉 =

∫ L

0

(
E(2)∂2

xE(1) + Ê(2) c2

n2(x)
Ê(1)

)
dx + S2 (2.26)

which is equal to the right-hand side of (2.20) and proves thesymmetry ofH under
action of the bilinear map.

QNM orthogonality From the symmetry of the operatorH defined in (2.20)
follows the orthogonality of the eigenfunctions (2.17). First, let us assume that
there are two distinct solutions,(−iωk, Qk) satisfying the eigenvalue equation

HQk = (−iωk)Qk. (2.27)

Let us project (2.27) onto QNMsQm

〈Qm,HQk〉 = 〈Qm, (−iωk)Qk〉. (2.28)

If we use the symmetry ofH and the linearity of the bilinear map, we obtain

〈HQm, Qk〉 = (−iωk)〈Qm, Qk〉, (2.29)

and
(−iωm)〈Qm, Qk〉 = (−iωk)〈Qm, Qk〉, (2.30)

which gives
(ωm − ωk)〈Qm, Qk〉 = 0. (2.31)
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If we assume thatωk 6= ωm for k 6= m the relation above requires

〈Qm, Qk〉 = Nkδmk, (2.32)

whereδmk = 1 if m = k, andδmk = 0 if m 6= k ; the normalization constantNk

is a complex number.
For valid QNMs, solution of (2.17)Qk = [Qk − iωk

n2

c2
Qk]

T we have

〈Qk, Qk〉 = 2(−iωk)

∫ L

0

(
n2(x)

c2
Q2

kdx

)
+

n0

c

(
(Q2

k)x=0 + (Q2
k)x=L

)
. (2.33)

Thus, the bilinear map (2.19) provides orthogonality relations of eigenfunctions
in the two-component formalism. We will exploit this property in the following
sections. This relation can be obtained directly from the Helmholtz equation by
simply multiplying (2.3) with appropriate QNMs, subsequent partial integration,
and using the outgoing wave boundary conditions.

Note, that the norm associated with the QNMs via bilinear mapis in general
the complex number and thus can not be interpreted as usual positive definite norm
[24].

Completeness of QNMs Let us introduce a simultaneous expansion of both
components of an open cavity fieldE(x, t) and Ê(x, t) in terms of the compo-
nents of the eigenfunctionsQ(x) andQ̂(x):

E(x, t) =

∞∑

k=−∞

ak(t)Qk(x). (2.34)

The same time dependent coefficientak(t) is used for both components.
Given the orthogonality of the QNMs, the two component formalism suggests

appears to provide effective projection technique for a QNMexpansion based on
the introduced bilinear map. However, the approximations may be better justified
if some completeness property for the full set of QNMs can be established.

In [69, 68] the completeness of QNMs has been approached through a repre-
sentation of the Green function satisfying causal initial conditions and asymptotic
outgoing wave boundary conditions. The following relations are obtained:

∞∑

k=−∞

Qk(x)Qk(y)

〈Qk, Qk〉
= 0, for x, y ∈ [0, L] (2.35)

and
∞∑

k=−∞

n2(x)

c2

ωkQk(x)Qk(y)

〈Qk, Qk〉
= δ(x − y), for x, y ∈ [0, L]. (2.36)

These relations are interpreted as completeness relationsunder the specific condi-
tions that exterior of the structure is homogeneous and (2.34) is valid only inside
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the domain of the structure [69]. The reasoning on completeness properties for
QNMs in [57, 76, 77] led to the observations that the set of theQNMs is in fact
overcomplete. Then, uniqueness of the QNM expansion is not guaranteed any
more.

2.2.2 QNM expansion and exponentially decaying fields

Let us represent an arbitrary field inside the cavity, that satisfies outgoing wave
boundary conditions (2.16), in terms of quasi-normal modes(2.34), and project
with (2.19) this distribution onto a QNM eigenfunctionQm:

〈Qm, E〉 = 〈Qm,

∞∑

k=−∞

ak(t)Qk〉. (2.37)

Next, orthogonality of the QNMs leads to

〈Qk, E〉 = ak(t)〈Qk, Qk〉, (2.38)

which gives a projection formula for the expansion coefficients

ak(t) =
〈Qk, E〉
〈Qk, Qk〉

. (2.39)

To solve the problem of the time-evolution of an initial optical cavity field, sub-
jected to outgoing wave boundary conditions, let us differentiate with respect to
time the projection formula (2.39):

∂tak(t) =
〈Qk, ∂tE〉
〈Qk, Qk〉

. (2.40)

Then from the time evolution equation (2.15) it follows that

∂tak(t) =
〈Qk,HE〉
〈Qk, Qk〉

. (2.41)

The symmetry (2.20) ofH and the eigenvalue equation (2.17) lead to

∂tak(t) =
(−iωk)〈Qk, E〉

〈Qk, Qk〉
(2.42)

According to (2.38) the expansion coefficients satisfy the equation

∂tak(t) + iωkak(t) = 0. (2.43)

This equation describes the time evolution of an arbitrary field inside the cavity
satisfying outgoing wave boundary conditions in terms of the complex frequencies
corresponding phase factors in the expansion

E(x, t) =
∞∑

k=−∞

ak(0)Qk(x)e−iωkt, for t > 0, (2.44)
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where

ak(0) =
〈Qk, E(x, 0)〉
〈Qk, Qk〉

. (2.45)

The initial conditions necessary to be specified in this caseare both field compo-

nents at the timet = 0 , that isE(x, 0) andÊ(x, 0) = n2(x)
c2

∂tE(x, 0).
The representation of time-exponentially decaying statesvia similar QNM su-

perposition has been considered in [78]. In particular, it has been shown that de-
caying state can be represented by a QNM superposition for some smooth initial
conditions in a localized spatial region, see [78] and references therein.

2.2.3 QNM expansion and the transmission problems

In the transmission problem, multilayer structures interact with the environment
through external excitation by an incoming wave. We are seeking a description of
the transmission problem via a QNM expansion method [73], [65],[71],[72].

Time domain The total field of the optical structure subjected to the influx from
one side is described, within the two-component formalism,by means of the time
evolution equation (2.15) and the transparent influx boundary conditions

(
∂E

∂x
− c

n0
Ê

)

x=0

= b(t),

(
∂E

∂x
+

c

n0
Ê

)

x=L

= 0, (2.46)

where
b(t) = −2

c

n0
(Êin)x=0. (2.47)

First, let us expand the total field in terms of QNMs

E(x, t) =

∞∑

m=−∞

am(t)Qm(x) (2.48)

Next, we project the total field onto the QNM basis

〈Qk, E〉 = 〈Qk,

∞∑

m=−∞

am(t)Qm〉 (2.49)

Orthogonality of QNMs, invoked in the right-hand side gives

〈Qk, E〉 = ak(t)〈Qk, Qk〉. (2.50)

To obtain the time dynamics equation for the coefficients in the expansion, let us
differentiate with respect to time

∂tak(t) =
〈Qk, ∂tE〉
〈Qk, Qk〉

. (2.51)
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Using the time-evolution equation (2.15) this can be written

∂tak(t) =
〈Qk,HE〉
〈Qk, Qk〉

. (2.52)

According to the definition ofH, we have

HE =

(
c2

n2(x)
Ê, ∂2

xE

)T

, (2.53)

and consequently in (2.51)

〈Qk,HE〉 =

∫ L

0
dx

(
Qk∂

2
xE + Q̂k

c2

n2(x)
Ê

)
+ St, (2.54)

where

St =
n0

c

((
Qk

c2

n2
0

Ê

)

x=0

+

(
Qk

c2

n2
0

Ê

)

x=L

)
. (2.55)

Further, let us partially integrate twice in the first integral (2.54) and apply out-
going wave boundary conditions for the eigenfunctions and the transparent influx
boundary conditions for the transmission field to obtain

〈Qk,HE〉 =

∫ L

0
dx

(
E∂2

xQk + Q̂k
c2

n2(x)
Ê

)
+ S1 + S2 + St (2.56)

where
S1 = (Qk∂xE) |L0 = −Qk(0)b(t) − St (2.57)

and

S2 = − (E∂xQk) |L0 =
n0

c

((
E

c2

n2
0

Q̂k

)

x=0

+

(
E

c2

n2
0

Q̂k

)

x=L

)
. (2.58)

Upon identifying that

〈HQk, E〉 =

∫ L

0
dx

(
E∂2

xQk + Q̂k
c2

n2(x)
Ê

)
+ S2 (2.59)

follows the relation

〈Qk,HE〉 = 〈HQk, E〉 − Qk(0)b(t). (2.60)

After using the eigenvalue equation and orthogonality of QNMs from (2.52) the
time- dynamics equation for the expansion coefficients reads

∂tak(t) + iωkak(t) = −Qk(0)b(t)

〈Qk, Qk〉
. (2.61)
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Therefore, in the presence of an incoming wave the coefficients in the expansion of
the total field are determined as solutions of the inhomogeneous equation (2.61).
If there are no incoming waves, the equation becomes homogeneous, as expected.

Note that in (2.61) the incoming wave excites all QNMs supported by the struc-
ture. However, a certain time interval after the excitationis withdrawn the time
domain fields may be well approximated by one or few QNMs. Thisespecially
holds when defect QNMs with small imaginary parts are considered, see [26] and
references therein.

Frequency domain To obtain a description of the system in the frequency do-
main let us perform a Fourier transform withf(x, ω) =

∫ +∞

−∞
f(x, t)eiωtdt, where

ω ∈ R, on all quantities of interest. First, we take only the first component in the
expansion formula (2.34) for the field inside the cavity:

E(x, ω) =

∞∑

k=−∞

ak(ω)Qk(x). (2.62)

Further, we Fourier transform the equation for the expansion coefficients (2.61)
that include the contribution from the incoming wave (2.6) :

ak(ω) =
Qk(0)b(ω)

i〈Qk, Qk〉(ω − ωk)
(2.63)

where
b(ω) = −2

c

n0
Êin(0, ω) = 2iω

n0

c
Ein(0, ω). (2.64)

From the continuity conditions for the field on the structureboundaries it follows
that

E(0, ω) = Ein(0, ω) + Es(0, ω) (2.65)

and
E(L,ω) = Etr(L,ω). (2.66)

HereEs represents the reflected, left traveling wave in the regionx < 0, Etr is
the transmitted right traveling wave present forx > L. This enables us to relate
the incident wave to the expanded fieldE in the frequency domain. The amplitude
transmission coefficient is defined as

t(ω) =
Etr(L,ω)

Ein(0, ω)
(2.67)

so we can write the expression for the transmission coefficient

t(ω) = 2
n0

c

∞∑

k=−∞

ωQk(0)Qk(L)

〈Qk, Qk〉(ω − ωk)
(2.68)
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If we apply the sum rule (2.35) the expression for the transmission coefficient ob-
tains the form

t(ω) = 2
n0

c

∞∑

k=−∞

ωkQk(0)Qk(L)

〈Qk, Qk〉(ω − ωk)
(2.69)

which turns out to be the one with (much) faster convergence.A similar expression
can be obtained for the reflection coefficient

r(ω) =
Es(0, ω)

Ein(0, ω)
= 2

n0

c

∞∑

k=−∞

ωQ2
k(0)

〈Qk, Qk〉(ω − ωk)
− 1. (2.70)

The transmittanceT and reflectanceR (relative transmitted and reflected optical
power) are given by

T (ω) = |t(ω)|2, and R(ω) = |r(ω)|2. (2.71)
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Figure 2.3: Spectral transmittance determined by (2.69) using different numbers of
basis functions for periodic defect structure.

Consider the defect structure of section 2.1.2. Figure 2.3 compares the spectral
transmittance (2.71) computed by TMM with the approximation (2.69) for differ-
ent numbers of basis fields in expansion. In Figure 2.3 A) the resonant transmission
around the defect resonance is depicted. Good approximation of the spectral trans-
mission is obtained with only one term, i.e. the contribution of the QNM with the
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real part of the eigenfrequency closest to the frequency of the defect resonance, see
Figure 2.2 A). Naturally, it is expected that approximationimproves when the num-
ber of basis functions, here the number of terms in (2.69), isincreased to include
contribution from other QNMs. Figure 2.3 B) depicts result including five QNMs,
those associated with the defect and four of the bandedge eigenfrequencies. As
can be seen the spectral transmission around the bandedge region is not adequate
which should not be a surprising result as the contributionsof other QNMs may
not be negligible in these regions. However, as depicted in the inset of Figure 2.3
B), the approximation of the spectral transmission around the defect resonance gets
worse. Further increasing the number of basis functions improves approximation
of the spectral transmission in the whole frequency range and around the defect
resonance. A result with 19 basis functions belonging to thefirst band (see Fig-
ure 2.2 A)) is shown in Figure 2.3 C). With larger number of basis functions the
spectral transmission may be approximated up to the desirederror. Similar exam-
ples of an approximation of the spectral transmission for periodic multilayers have
been considered in [65, 72, 79].
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Figure 2.4: Field profile for transmission resonance; exactTMM solution and
QNM expansion approximation.

The somewhat odd behavior of the QNM approximation may be understood
better if the fields are considered directly. In Figure 2.4 weshow comparisons
between the QNM approximation and the TMM solution of the field profile asso-
ciated with the defect resonance resonanceω = ω0. Note that the transmission
resonance in this configuration is a fully transmitted field because the structure
possesses a spatially symmetric refractive index distribution. This is a somewhat
extreme situation, because reflected waves (outgoing components of the total field)
at the left side of the structure are not present. Therefore the nature and properties
of QNMs are totally opposite to the fields that have to approximated.
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In Figure 2.4 A) both the TMM result and the QNM approximationwith only
one basis function is shown. It is clear that field is globallyvery well approximated
when considered on the extension of the whole structure. However, as depicted
in the inset fields are indeed different in a localized region. Around the input
boundary this observation seems not to be entirely appreciated in the literature
because usually comparisons of the modulus of the fields are considered. If the
number of basis functions is increased the field approximation becomes better, and
the localized region where the fields are different shrinks as shown in Figure 2.4 A).
Nevertheless, a characteristic oscillation of the approximated field around the exact
solution (ringing artifact) demonstrates a form of the wellknown Gibbs phenomena
[28]. This observation suggests that the QNM approximationmay approach the
exact solution only when an infinite number of the basis functions is included.
Moreover, the approximation is valid only inside the structure up to the boundaries,
see [69, 70, 73] and references therein.

Note that the nature of QNMs and the related expansion methodare somewhat
special as the QNMs are solutions of a non-Hermitian eigenvalue problem. Then
the completeness of the QNM basis, a uniqueness of the expansion, and conver-
gence of truncated sums using QNMs can not be guaranteed by standard methods,
see [24] and references therein. Indeed, [57, 77] point to the over-completeness of
the QNM basis set. Therefore, coefficients in the QNM expansion may be deter-
mined in different ways. Moreover, as we already encountered during the deriva-
tion of the spectral transmission, e.g. the manipulations involving the summation
rules (2.35),(2.36), special techniques have to be used to speed up the convergence
of sums incorporating QNMs. Usually, for this purpose one explicitly uses similar
re-summations of QNM expansion series according to the completeness relations
[70].

The formalism using the pseudo-inner product as described previously may be
appealing as if transcribes the derivation and form of the usual eigenfunction ex-
pansion technique. However, an alternative approach may becarried out without
any reference to the completeness property or a pseudo-inner product if a varia-
tional form of the transmission problem and a field template with a truncated sum
of QNMs from the whole set is used, see chapters 3 and 4. Then stationarity of the
functional determines the relevant coefficients in the QNMsexpansion.

2.3 Time-independent perturbation theory for QNMs

The previous results suggest that the QNMs supported by an optical structure con-
tain all necessary information about intrinsic structuralproperties that control the
response of the structure to some external influence. However, complexity of the
QNMs computation for an arbitrary optical structure are a somewhat limiting fac-
tor for rapid and accurate analysis. Therefore, an perturbation theory for QNMs
is of interest to provide an approach to computation of complex eigenfrequencies
when internal perturbations of the structure are applied.

46



Chapter 2. Resonances and quasi-. . . 2.3. Time-independent. . .

After the results regarding the completeness property, thepseudo-inner prod-
uct, and the two-component formalism, a time-independent perturbation theory for
QNMs has been outlined in [70]. The formalism provides all derivations in close
analogy to usual time-independent perturbation theory [28, 29]. We briefly review
this procedure in the following subsection.

2.3.1 QNMs perturbation theory and two-component formalism

A time-independent perturbation theory for QNMs can be derived from the two-
component formalism [70]. Let us assume that some change of refractive index is
represented as:

1

n2
pert

(x) =
1

n2
org

(x) (1 + µV (x)) (2.72)

whereµ is the (small) parameter related to the change of refractiveindex in the
structure. The perturbationV (x) is nonzero only inside the computational domain
x ∈ [0, L]. The eigenvalue problem for the perturbed structure is

(
H(0) + µΛ

)
Q(p)

k =
(
−iω

(p)
k

)
Q(p)

k , (2.73)

with the operator of the original (unperturbed system)

H(0) =

(
0 c2

n2
org(x)

∂2
x 0

)
, (2.74)

and the perturbation operator

Λ =

(
0 c2

n2
org(x)

V (x)

0 0

)
. (2.75)

Let us assume that the unperturbed eigenvalue problem is solved and eigenvalues
and eigenfunctions are known

(
H(0)

)
Q(0)

k =
(
−iω

(0)
k

)
Q(0)

k (2.76)

Then, perturbation theory seeks for solutions of the eigenvalue problem with eigen-
values and eigenfunctions expressed as a power series in thesmall parameter:

ωp
k =

∞∑

j=0

(
µj
)
ω

(j)
k (2.77)

and

Q(p)
k =

∞∑

j=0

(
µj
)

Q(j)
k (2.78)
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Next, we substitute (2.77) and (2.78) into (2.73) and group terms with the same
order inµ to get:

H(0)Q(0)
k =

(
−iω

(0)
k

)
Q(0)

k (2.79)

(
H(0) −

(
−iω

(0)
k

))
Q(1)

k +
(
Λ −

(
−iω

(1)
k

))
Q(0)

k = 0 (2.80)

which are the terms up to the first order inµ. Let us project equation (2.80) onto
the eigenfunction of the unperturbed systemQ(0)

m :

〈Q(0)
m ,
(
H(0) −

(
−iω

(0)
k

))
Q(1)

k 〉 + 〈Q(0)
m ,
(
Λ −

(
−iω

(1)
k

))
Q(0)

k 〉 = 0 (2.81)

Due to symmetry of theH(0) and orthogonality of the eigenfunctions the first term
vanishes and from the second term it follows that

〈Q(0)
k ,ΛQ(0)

k 〉 =
(
−iω

(1)
k

)
〈Q(0)

k , Q(0)
k 〉. (2.82)

Therefore, the first order correction to the complex frequency is given in the form

ω
(1)
k = i

〈Q(0)
k ,ΛQ(0)

k 〉
〈Q(0)

k , Q(0)
k 〉

, (2.83)

which gives first order corrections of the real and complex parts of the frequency.
The first order eigenvalue correction requires only the respective eigenvalue and
eigenfunction of the unperturbed system, while higher order corrections include
summations over all QNMs [70].

Although this approach is similar in form to the usual perturbation theory [28],
it has been scarcely applied for the concrete analysis of general structures. This
is partly because it relies on the completeness property andpartly due to fact that
higher order approximations obtained are slowly convergent and require special
acceleration methods to obtain faster converging series [70].

2.3.2 Variational QNM perturbation theory

A path toward a perturbation theory for QNMs that does not rely on the complete-
ness of the QNMs basis set or the pseudo-inner product is to use the variational
formulation of QNMs (eigenvalue) problem, see chapter 4. One can start with the
functional

Lω(Q) =
1

2

∫ L

0

(
(∂xQ(x))2 − ω2n2(x)

c2
Q2(x)

)
dx − iωn0

2c

(
Q2|x=0 + Q2|x=L

)
.

(2.84)
If L becomes stationary, i.e. if the first variation ofL vanishes for arbitrary varia-
tions ofQ, thenQ satisfies the Euler-Lagrange equation (2.3), and (2.4) as natural
boundary conditions.
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Consider a perturbation of the structure that can be expressed as a local pertur-
bations of the permittivityn2(x) = n2

org(x) + n2
pt(x) for x ∈ [0, L]. Let us as-

sume that(ω0, Q0) is the known solution of the QNM problem for the unperturbed
structure with permittivityn2

org. The value of the functional for the eigenfunction-
eigenvalue pair is zeroLω0

(Q0) = 0. This property that can be shown by integrat-
ing the first term in the (2.84) by parts.

Small in effect perturbations of the original structure should not change greatly
neither the position of the complex eigenfrequency in the complex plane nor the
shape of the corresponding QNM. Let the exact solution for the perturbed structure
be(ω,Q) with eigenfrequencyω = ω0+δω. It can be easily shown that the restric-
tion to the QNM solution of the unperturbed problemQ ≃ Q0 and the stationarity
of the functional leads to

(ω0 + δω)2(A0(Q0) + Apt(Q0)) + (ω0 + δω)B0(Q0) + C0(Q0) ≃ 0 (2.85)

where

A0(Q0) = − 1

2c2

∫ L

0
n2(x)Q2

0(x)dx, (2.86)

Apt(Q0) = − 1

2c2

∫ L

0
n2

pt(x)Q2
0(x)dx, (2.87)

B0(Q) = − i

2c

(
ninQ2|x=0 + noutQ

2|x=L

)
, (2.88)

C0(Q) =

∫ L

0
(∂xQ(x))2 dx. (2.89)

After evaluating (2.85), the correction to the eigenvalue up to first order reads

δω = −
ω2

0

c2

∫ L
0 n2

pt(x)Q2
0(x)dx

2ω0

c2

∫ L
0 n2

org(x)Q2
0dx + in0

c

(
Q2

0|x=0 + Q2
0|x=L

)
)
. (2.90)

Consider the example of single cavity structure coded as(HL)4D(LH)4, with
nH = 3.42 nL = 1.45, enclosed within two semiinfinite media of the same refrac-
tive indexn0 = 1.0. All layers are quarter-wavelength, except the central defect
layer that is half-wavelength. Perturbation of this structure is a localized change
of the defect layer refractive indexn2 = n2

D(1 ± χ) with χ ∈ (−0.1, 0.1). The
thicknesses and refractive indices of other layers are not affected.

Figure 2.5 A) compares positions of the complex eigenfrequencies for the per-
turbed structure computed according to the first order perturbation theory formula
(2.90) with the direct computation. Note that the perturbation theory correction is
tangent to the eigenfrequency path in the complex plane. In Figure 2.5 B) and C)
the dependence of the real and imaginary parts of the complexeigenfrequency on
the defect layer refractive index is shown.

The variational perturbation theory may be extended to higher order correc-
tions. Then variational accuracy guarantees that certain order of the perturbed
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Figure 2.5: Complex eigenfrequencies for the single-defect structure obtained by
direct computation of eigenvalues for the perturbed structure, and by first order
perturbation theory .

eigenfrequency is determined by lower order eigenfunctions. Using subsequently
suitable restrictions and the stationarity of the functional, an iterative procedure for
determining higher orders correction to the eigenfrequencies and QNMs may be
obtained.
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Chapter 3

Field representation for optical
defect resonances in multilayer
microcavities using quasi-normal
modes

ABSTRACT 1

Quasi-Normal Modes are used to characterize transmission resonances in 1D op-
tical defect cavities and the related field approximations.We specialize to reso-
nances inside the bandgap of the periodic multilayer mirrors that enclose the de-
fect cavities. Using a template with the most relevant QNMs avariational principle
permits to represent the field and the spectral transmissionclose to resonances.

1This chapter is adapted from: M.Maksimovic, M. Hammer, E.van Groesen, Field representation
for optical defect resonances in multilayer microcavitiesusing quasi-normal modes, Optics Commu-
nications, 281, 1401-1401, 2008
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3.1 Introduction

When subjected to external excitation, periodic multilayer structures show a reso-
nant response in the time or frequency domain, which can be tailored by inclusion
of defects [8, 7, 9, 4]. Finite structures can be viewed as open systems which
permit the leakage of energy to the exterior, described by the Helmholtz equation
with outgoing wave boundary conditions. This constitutes an eigenvalue problem
for complex frequencies and the associated field profiles, orquasi-normal modes
(QNMs) [20].The quasi-normal modes specify the field patterns in which the leaky
optical structure would oscillate naturally after an initial excitation is withdrawn,
representing damped oscillatory solutions of the wave equation [24, 58]. QNMs
and associated complex eigenvalues can be viewed as a propermodel for solv-
ing the problem of energy leaking out of open structures, see[7, 20, 24, 26] and
references therein.

Our aim is to use the characterization of the optical microcavity structures in
terms of quasi-normal modes to describe approximately the resonant response to
external excitation in the frequency domain and the relatedfield profiles.

For specific configurations the complex QNM eigenvalues appear to corre-
spond to the position and quality of resonances in the spectral transmission. Al-
though this holds when spectral resonances are sufficientlyfar apart from each
other, this is not a general property and real frequencies oftransmission resonances
can be quite different form the real parts of the complex QNM eigenfrequencies in
the given frequency range [79].

Field representations using QNMs have been investigated in[79, 65, 71, 72,
80], on the basis of quasi-normal mode theory as establishedin [24], founded on
certain completeness properties and a linear-space structure for QNMs [68, 69, 70].
Orthogonality of QNMs is expressed with a specific bilinear form that includes
boundary terms and in contrast to the usual inner product does not define a real,
positive definite norm [74, 75]. An eigenfunction expansionbased on this bilinear
form [24, 73], used as a means for projecting functions onto the QNM basis, can
furnish a field representation only over a finite spatial domain (due to exponentially
growing envelopes of QNM basis functions) and under certainconditions necessary
for completeness, as detailed in [68]. The completeness properties of QNMs have
been addressed also in [76, 77].

When applying a QNM expansion method to transmission problems, several
points are important. First, individual QNMs do not satisfythe proper boundary
conditions for the transmittance problem directly. The incoming wave contribu-
tion in the transmission problem is introduced via time dynamic equations for the
expansion coefficients. Frequency domain equations are obtained by Fourier trans-
form [72], [73]. Second, as detailed in reference [73], an expansion based solely
on QNMs can represent the internal cavity field up to the boundary of the enclosed
region, with exception of a set of measure zero (the boundarypoints). This means
that QNM expansions permit convergence in the mean but not pointwise. This sit-
uation arises specifically when the relevant field does not satisfy the same outgoing
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wave boundary conditions as the QNMs. Hence, despite the completeness prop-
erty, in these cases finite, truncated QNM expansions lead topoorly converging
field representations. Only after applying certain summation rules following from
the completeness relations [24, 73] a better convergence might be achieved. Still,
adequate approximations of the fields usually require summations over many basis
modes (although this hardly ever seems to have been observedexplicitly, perhaps
due to comparisons of intensity shapes in place of field profiles). In addition some
caution is necessary when taking into account contributions of a single resonance in
the field representation based on QNM expansion, as emphasized in the reference
[73]. This holds even in a spectral region of isolated, defect-induced transmission
resonances in the bandgap, where one would expect that only those QNMs with
the real parts of their eigenfrequencies in this frequency region are sufficient.

Alternative approaches in describing leaky optical structures are reported in
literature and field representations in open 1D cavity structures are considered, see
[58] and references therein. These methods primarily consider quantum theory
of open systems and do not establish a direct connection between transmittance
(scattering) problems and QNMs for general structure.

As far as we are aware no adequate generalizations to 2D and 3Dstructures are
reported in literature of the above mentioned approaches. This is also true for PBG
(photonic bandgap) structures that we are primarily interested in. Some attempts to
use a QNM-like (eigenmode) description for 2D and 3D PBG structures are those
related to a scattering-matrix approach as reported in [81,82] and [23].

It is the purpose of this paper to establish a quantitative relation between the
description of the structure under external excitation with given fixed frequency
(the transmittance problem) and the eigenvalue problem forQNMs, emphasizing
the nature of realistic open structures. Our method specializes to optical defect
structures where high-Q resonances are present inside the photonic bandgap. As
detailed in this paper, it turns out that the variational form of the transmission
problem offers a resourceful alternative to existing methods when applied to de-
scription of the fields and transmission responses of the localized defect modes
formed inside the photonic bandgap. Our method does not relyon any complete-
ness properties of QNMs nor on a bilinear form for projectingfields onto the QNM
basis.

The approach proposed in section 2 uses a combination of the bandgap field of
the structure (without defect) and only one/few relevant QNM(s) as a template. By
restricting a specific functional one obtains approximations for the spectral power
transfer and the optical field related to the transmission through the defect struc-
ture. In section 3 we analyze single and multiple defect cavities in finite 1D pe-
riodic structures for both symmetric and non-symmetric layer arrangements. Real
world structures are bound to be finite and this feature is explicitly incorporated
by the present approach, in contrast to techniques that relyon artificial periodiza-
tion in Bloch-type analysis and supercell methods that can introduce nonphysical
and spurious solutions, although usefulness and applicability of these methods is
proven and well established in practice [7, 9].
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3.2 Theory

We consider problems in 1D for structures with arbitrary piecewise constant refrac-
tive index distributionn(x) within a finite domainx ∈ (0, L) and assume that the
structure is enclosed by two semi infinite domains with constant refractive indices
nin, nout as depicted in Fig. 1 .

Figure 3.1: The (defect) grating is a finite periodic structure consisting of two
materials with high indexnH and low indexnL. The layer thicknessesLH , LL

are quarter-wavelength for the target wavelength. Opticaldefects are introduced as
changes of layer thicknesses. The grating is surrounded by two semi-infinite media
of indicesnin andnout.

We choose a harmonic time dependence for the electric field

E(x, t) = E(x)e−iωt. (3.1)

Therefore, the response of the structure under external excitation is described by
the Helmholtz equation

∂2
xE(x) + k2(x)E(x) = 0 (3.2)

with a transparent influx boundary condition at the side of the structure where the
incident wave (Einc = Aince

ikinx) impinges, and a transparent boundary condition
at the other side

(∂x + ikin)E|x=0 = 2ikinAinc, (3.3)

(∂x − ikout) E|x=L = 0, (3.4)

wherek(x) = ω2n2(x)/c2, kin = ninω/c andkout = noutω/c , for given ampli-
tude of the incident waveAinc and frequencyω. This is the transmittance problem,
where the field distribution inside and outside the structure for given real frequency
ω of the incident wave is to be determined. For a solution of (3.2),(3.3),(3.4) the
transmittance is the ratio between the time-averaged Poynting vectors in the re-
spective media of incident and output regions. This is the ratio between incident
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and transmitted power for time-harmonic electromagnetic fields

T =
Pout

Pin
=

1
2nout | E(L) |2
1
2nin | Einc(0) |2

. (3.5)

In this context, a transmission resonance can be defined as a local maximum of the
transmittance in a selected frequency region of otherwise low transmittance.

Alternatively, a finite structure can be viewed as an open system with transpar-
ent boundaries which permit leakage of energy to the exterior. Just as before, the
behavior of the electric field in the interiorx ∈ (0, L) is governed by the Helmholtz
equation

∂2
xQ(x) + k2(x)Q(x) = 0 (3.6)

now with outgoing wave boundary conditions

(∂xQ(x) + ikinQ(x))x=0 = 0 (3.7)

(∂xQ(x) − ikoutQ(x))x=L = 0. (3.8)

This constitutes an eigenvalue problem for the frequencyω as the complex
eigenvalue and the electric fieldQ(x) as eigenfunction, called Quasi-Normal Mode.
QNMs appear as discrete infinitely countable set of solutions of this eigenvalue
problem [24]. They are unbounded functions that blow-up forx → ±∞, so they
are essentially different from resonant field solutions of the transmittance problem.

A finite, but internally periodic structure, i.e. a finite multilayer grating pos-
sesses a QNM spectrum that appears to be related to the bandgap structure and res-
onance properties of the transmission / reflection spectra.Representations in terms
of QNMs for finite, periodic structures have been investigated in [65, 71, 72]. The
positions of complex eigenfrequencies in the complex planeare arranged in such
way that suggest the presence of bandgap regions in the transmittance response.
Occurrence of the bandgap is to be expected for slices in the complex frequency
plane where eigenvalues are not present. The edge of the bandgap in these terms
can be estimated by taking real parts of the eigenfrequencies at the ends of sepa-
rated arranged sets of eigenvalues [65, 71, 72]. The introduction of a defect in an
otherwise periodic multilayer results in isolated QNMs with the real parts of their
complex eigenfrequencies inside the bandgap region, as shown in section 3.

In [65, 72] it has been noticed that the squared modulus of a QNM with com-
plex frequencyωp is similar to the field intensity inside the structure for a real
frequencyω ≈ Re(ωp). This is a good approximation in particular for high-Q
transmission resonances and for QNMs with eigenfrequencies with small imagi-
nary parts. Still, a proper approximation of the field (not intensity) in the transmis-
sion problem requires many terms in an expansion based solely on QNMs.

3.2.1 Solutions by transfer-matrix method

We consider multilayer structures with piecewise constantrefractive index distri-
bution inside the finite spatial domain. Method for solving the transmittance (and
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eigenvalue) problems is the well known transfer matrix method (TMM) [4]. So-
lutions of the Helmholtz equation are given as combinationsof left- and right-
travelling waves in thej-th layer

Ej(x) = Aje
ikj(x−lj−1) + Bje

−ikj(x−lj−1) (3.9)

for x ∈ [lj−1, lj ] in a region of constant indexnj wherekj = njω/c is the wave
number in this layer. To connect the fields inside all layers we impose continuity
conditions at the interfaces between consecutive layers,

Ej(lj) = Ej+1(lj), (3.10)

and
∂xEj(lj) = ∂xEj+1(lj). (3.11)

These conditions lead to a system of equations that relate amplitudes of left-
and right- traveling waves in different layers. They can be represented in matrix
form. Ordered multiplication of the relevant matrices connects amplitudes in each
layer of the structure, as well as the amplitudes in the incidence and output regions:

(
Ain

Bin

)
=

(
m11(ω) m12(ω)
m21(ω) m22(ω)

)(
Aout

Bout

)
. (3.12)

The transmittance problem with incoming wave from the left is solved withBout =
0 for specifiedAin (amplitude of the incoming wave) with given real frequency
ω ∈ R. The amplitude transmission and reflection coefficients areexpressed as

t(ω) =
Aout

Ain
, (3.13)

r(ω) =
Bin

Ain
. (3.14)

If we choose conditionsAin = Bout = 0, i.e. restrict the exterior solutions
to purely outgoing waves, the eigenvalue problem with outgoing wave boundary
conditions is addressed . With these conditions the system of equations can be
nontrivially satisfied if

m11(ω) = 0. (3.15)

Analytic continuation of transfer matrix into the complex plane enables us to find
solutions of (3.15) as complex eigenvaluesω [23]. By substituting the eigenvalue
into the field representation (3.9) we obtain the corresponding eigenfunction, up to
a complex constant. To solve (3.15) we apply a numerical iteration procedure of
Newton type. In cases when that method fails to converge due to closely spaced
eigenvalues, we use a more powerful technique for determining complex solutions,
based on the argument principle method from complex analysis [81].
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3.2.2 Field template and variational formulation for transmittance
problem

We specialize to finite periodic structures that possess transmission properties with
a bandgap, i.e. with a region of frequencies of very low transmission. Introduction
of suitable defects leads to a resonant transmission response inside the bandgap of
the underlying periodic structure. We choose a field template for the transmittance
problem as

E(x, ω) ≃ Emf (x, ω) +
N∑

p=1

ap(ω)Qp(x), (3.16)

wherep is an index countingN relevant QNMs . We take the relevant QNMs as
those with the real part of their complex frequency in the given frequency range.
We show, in terms of the successful application of the template (3.16), that the
transmission resonance associated with the defect, appearing inside the bandgap,
is triggered by the ”mirror” fieldEmf of the periodic structure without defect,
which for frequencies inside the bandgap is an almost completely reflected wave
with only a weak tail that extends into the interior of the structure.

Note thatEmf satisfies correct boundary conditions of the form (3.3) for the
transmittance problem, while a superposition of QNMs can not cover the contri-
bution of the incoming wave directly. The incoming field has to be included by
other means when expansion into the complete set of QNMs is considered [72].
The inclusion ofEmf (or some similar object) is essential in our approach as a
means to represent the incoming wave. The mirror field does not extend far into
the region of the defect where the contributions of the relevant QNMs are expected
to be dominant.

Hence, according to template (3.16) the forced resonance response of the struc-
ture appears because the incident wave possesses a real frequency close to the real
part of the complex eigenfrequency of a suitable QNM supported by the defect
structure.

Obviously (3.16) constitutes only an approximate model forthe transmittance
problem in specific frequency regions, since neitherEmf norQ satisfy all of equa-
tions (3.2)-(3.4). The residuals can be viewed as contributions from other QNMs
in the complete set supported [68] by the defect structure, that are not included in
(3.16). We shall see, however, that the template (3.16) leads to excellent approxi-
mations for the configurations of section 3.

To determine the decomposition coefficientsap in our field template we employ
a variational form of the transmittance problem. The transmittance problem corre-
sponds to the equation and natural boundary conditions, arising from the condition
of stationarity of the functional [25]:

L(E) =

∫ L

0

1

2

(
(∂xE(x))2 − k2(x)E2(x)

)
dx (3.17)

− 1

2
ikinE2(0) − 1

2
ikoutE

2(L) + 2ikinAincE(0).
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If L becomes stationary, i.e. if the first variation ofL(E) vanishes for arbitrary
variations ofE, thenE satisfies (3.2), (3.3), and (3.4) as natural boundary condi-
tions1.

Restricting the functional (3.17) to our field template (3.16),L becomes a func-
tion of the coefficientsap, for givenEmf andQp. The stationarity conditions then
read:

∂L(a1, a2, ..., aN )

∂aq
= 0, q = 1, ..., N. (3.18)

The optimal coefficients can be obtained as solutions of a system of linear equa-
tions

A · a = −b, (3.19)

wherea = [a1, a2, ..., aN ]T is the vector of coefficients to be determined. The
components of the matrixA = [Aqp]NxN and vectorb = [b1, .., bN ]T are

Aqp =

∫ L

0

(
∂xQq∂xQp −

n2(x)ω2

c2
QqQp

)
dx (3.20)

+ i
ω

c
(ninQq(0)Qp(0) + noutQq(L)Qp(L))

and

bq =

∫ L

0

(
∂xEmf∂xQq −

n2(x)ω2

c2
EmfQq

)
dx (3.21)

+ i
(ωq − ω)

c
(ninEmf (0)Qq(0) + noutEmf (L)Qq(L)) + 2inout

ω

c
AincQq(0).

By solving the system of equations (3.19) for each value of the real frequency
ω the decomposition coefficients in the field representation for the transmittance
problem are obtained. This enables approximation of the spectral transmittance
and reflectance and the related field profile. The transmittance reads:

T (ω) =
nout

nin
tt∗ =

nout

nin

∣∣∣∣∣
Emf (L) +

∑N
p=1 ap(ω)Qp(L)

Ainc

∣∣∣∣∣

2

. (3.22)

The field in the region of incidence can be seen as a superposition of incident and
reflected waves

E(x) = Aince
ikinx + rAince

−ikinx, (3.23)

wherer is the amplitude reflection coefficient, related to the reflectance (power
reflection defined as the ratio between the Poynting vectors of reflected and incident
waves)

R = rr∗ =

∣∣∣∣∣
Emf (0) +

∑M
p=1 ap(ω)Qp(0)

Ainc
− 1

∣∣∣∣∣

2

. (3.24)

1The functional obtained from (3.17) by settingAinc = 0, is formally related to the bilinear form
(inner product), in which QNMs are orthogonal [24]. However, the frequency plays a different role
in both cases: while in the functional (3.17) it is a given parameter, the bilinear form of [24] operates
on objects that include the eigenfrequencies as arguments.
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3.3 Results and Discussion

We specialize to structures with piecewise constant refractive index distribution
of high nH and low refractive indexnL layers, with quarter-wavelength optical
thicknessesLH , LL at a target frequencyω0. High index layers are denoted byH,
low-index layers byL and defect layers byD. Thus a finite symmetric periodic
structure is represented by(HL)NH, whereN is the number of the layer pairs.
The defects are introduced as changes of the thickness of specific layers, but the
method can handle defects introduced as changes of refractive indices of certain
layers as well. In examples below we use only1, 2 and3 most relevant QNMs
corresponding to single-, double- and triple-cavity structures.

When single high-Q resonances inside the bandgap are considered, decom-
position coefficients depend weakly on the frequency, apartfrom the Lorentzian
approximation (eqns. (3.28,3.29)). Then the transmittance profile can be obtained
analytically for the major part of the bandgap region aroundresonance position. If
the full frequency dependence is included inEmf as described so far, then com-
putational cost is comparable to direct TMM computations for the full structure,
but captures adequately the deviation from the Lorentzian approximation. Further,
we earn a certain degree of interpretability by being able toobserve the interplay
between the QNM basis modes.

3.3.1 Symmetric single cavity structure

We consider a layer arrangement(HL)4D(LH)4, as an example of a single cavity,
with nH = 3.42 nL = 1.45, enclosed within two semiinfinite media of the same
refractive indexnin = nout = 1.0. The defect is introduced as a change of the
thicknessLH in the central layer with high refractive indexnH with LD = 2LH .

The QNM spectrum for the original periodic structure and thestructure with the
defect is depicted in Fig. 2A). The QNM frequencies clearly show an arrangement
in the complex plane, that reflects the presence of the bandgap in the transmittance
response presented in Fig. 2B). For the defect structure a complex frequency in
the QNM spectrum appears in the position of the transmissionresonance in the
bandgap (see Fig. 2A). The field profile of the transmission resonance and the
profile of the QNM corresponding to the defect structure havesimilar pattern as
depicted in Figs. 2 C) and D). The difference between the QNM and transmission
resonance field is clearly visible in Fig. 2E), arising from different boundary con-
ditions (aroundx = 0, the transmittance field represents inwards traveling wave
and QNM outwards traveling wave), consequently leading to entirely different be-
havior in the region where the incident wave is present. We take the mirror field in
the template as the solution of the transmittance problem ofthe structure without
defect at each frequency in the considered bandgap region.

Approximating both the mode structure and the correct boundary conditions
for the field representation of the TRM (transmission resonance mode Fig. 2C ),
using the QNMs and the mirror field in Fig. 2F) leads to an excellent agreement
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Figure 3.2: A) Complex frequencies (eigenvalues) for periodic and single cavity
structure B) Transmittance for periodic (dashed) and single cavity structure (con-
tinuous) C) Field pattern for a (defect) frequency at the center of the bandgap, real
and imaginary parts D) Quasi normal mode corresponding to the complex eigen-
frequencyωM E) Comparison of the QNM forωM (solid line) and the transmission
(defect) field (dotted line) in the region aroundx = 0 where the incoming field is
present. F) Mirror field for the (periodic) structure without defect forω = Re(ωM )
G) Field associated with the transmission resonance in the defect structure obtained
via variational approximation based on mirror field and relevant QNM and com-
pared with TMM reference.

between the approximation obtained form the field template and the exact TMM
solution , as can be seen in Fig. 2G).

An acceptable agreement between the approximated field profile and the TMM
reference (exact solution) is valid in the whole bandgap frequency range. The
field template including an exciting field, together with thevariational procedure,
provides a constructive quantitative way to relate QNMs andTRMs.

The transmittance (3.22) is compared with the TMM referencecalculation, as
shown in Fig. 3A). We observe an excellent agreement betweenthe approxima-
tion and the TMM calculations. Fig. 3B) shows the frequency dependence of the
decomposition coefficientaM for this structure. The resonant response is clearly
reflected in this dependence, showing that the transmissionresonance is connected
with the excitation of the internal dynamics represented bythe relevant QNM.

60



Chapter 3. Field representation for. . . 3.3. Results and Discussion

0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ω /ω
0

T
ra

ns
m

itt
an

ce

A)

 

 

0.98 1 1.02
−0.5

0

0.5

1

1.5

ω/ω
0

a M
(ω

/ω
0)

B)

 

 

0.98 1 1.02
−3

−2

−1

0

1x 10
−5

ω/ω
0

α(
ω

/ω
0)

C)

 

 

TMM reference
Approximation

Re
Im

Re
Im

Figure 3.3: A) Transmittance obtained from field representation using QNMs and
TMM reference B) Decomposition coefficients C) Non-resonant part of the decom-
position coefficient.

A common assumption made in the literature is that the spectral transmission
for the single resonance situation, as described, is of a Lorentzian lineshape. Our
method can analytically justify this assumption. We consider the contribution of
a single QNM in the field template (3.16). The equation for thedecomposition
coefficient then reads

Aa(ω) + b = 0. (3.25)

After partial integration (3.21) can be given the form

b = ω2

∫ L

0

n2
0(x) − n2(x)

c2
EmfQqdx (3.26)

with n0 being the refractive index distribution for the finite periodic (unperturbed)
structure. After partial integration, (3.20) reads

A =
(
ω2

q − ω2
) ∫ L

0

n2(x)

c2
Q2

qdx + i
(ωq − ω)

c

(
ninQ2

q(0) + noutQ
2
q(L)

)
.

The amplitude transmission coefficient can be approximatedas

t(ω) =
Emf (L) + a(ω)Qq(L)

Ainc
≃ a(ω)Qq(L)

Ainc
, (3.27)
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assuming that the periodic structure represents a ”good mirror” with the prop-
erty Emf (L) ≃ 0. The frequency dependence of the transmission amplitude then
comes from the decomposition coefficient

a(ω) =
α(ω)

ω − ωq
≃ α

ω − ωq
, (3.28)

where

α(ω) =

ω2

∫ L

0

n2
0(x) − n2(x)

c2
EmfQqdx

(ω + ωq)

∫ L

0

n2(x)

c2
Q2

qdx +
i

c

(
ninQ2

q(0) + noutQ
2
q(L)

) . (3.29)

Term (3.29) is non-resonant in character; in the case of a very narrow resonance
ω ≃ Re(ωq) andIm(ωq) ≪ Re(ω) can be shown to depend weakly on the fre-
quency, see Fig. 3C). Therefore, in the framework of our approximate model equa-
tion (3.28) represents the Lorentzian like shape as shown inFig 3B). This result
agrees with those obtained previously in literature [65, 72, 73, 26] Here it follows
from a completely different approach and further supports the conclusion that our
method adequately captures the resonance character of the transmission.

3.3.2 Asymmetric single cavity

Now the internal structure of the previous example is enclosed within two semiin-
finite media of different refractive indicesnin = 1 andnout = 5 (as a somewhat
artificial example to emphasize asymmetric nature of the structure). The QNM
spectrum and transmittance shown in Fig. 4A) and 4B) and the QNM profile in
Fig. 4C) suggest that the difference between the symmetric and asymmetric struc-
tures is reflected in the shift of frequency positions in the complex plane.

The same qualitative behavior can be seen as in Fig. 2A) and 2B), i.e. a sin-
gle resonance appears in the bandgap region when the defect is introduced, now
with the lower transmittance level (corresponding to the reflection at an interface
between media with indicesnin and nout [4]). A similar field template as for
the symmetric structure is used. This choice is further confirmed by the excellent
agreement between the approximation of the transmittance with the TMM refer-
ence calculation shown in Fig. 4D).

3.3.3 Double cavity structure

For this example, we consider a layer arrangement(HL)4D(LH)2LD(LH)4,
where two defects are introduced as changes of thicknesses of layersLD = 2LH ,
wherenD = nH . The refractive index outside the structure is the same on both
sides. The values of the refractive indices are the same as insection 3.1. These
defects are forming two FP (Fabry-Perot like) resonant cavities enclosed by two
identical mirrors and one separating mirror.

62



Chapter 3. Field representation for. . . 3.3. Results and Discussion

0 0.5 1 1.5 2
−10

−1

−10
−2

−10
−3

−10
−4

Re (ω/ω
0
)

Im
(ω

/ω
0)

A)

 

 

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

ω/ω
0

T
ra

ns
m

itt
an

ce

B)

0 2 4

−20

0

20

x [µm]

R
e,

Im

C)

0.98 0.99 1 1.01 1.02
0

0.2

0.4

0.6

0.8

1

ω/ω
0

T
ra

ns
m

itt
an

ce

D)

 

 

Defect
Periodic

TMM ref.
Approx.

ω
M

Figure 3.4: A) QNM spectrum and B) Transmittance for the asymmetric periodic
(dashed) and defect (continuous) structure C) QNM for the defect structure D)
Transmittance obtained from the field representation usingQNMs and the TMM
reference.

The resonant response of the double-cavity structure is represented by two
complex frequencies in the bandgap region as shown in Fig. 5A). The correspond-
ing transmittance plot shows two distinct transmission resonances in the bandgap
region Fig. 5B). The QNMs for these two defect-induced eigenfrequencies are
shown in Fig 6C) and 6D). Symmetric and skew-symmetric behavior of the eigen-
fields is present, arising form the overall symmetry of the structure.

Fig. 6A) and 6B) shows the decomposition coefficients and theapproximated
transmittance response that is in excellent agreement withTMM reference. The
field template based on the mirror field of the structure without defects and linear
combination of the two relevant QNMs enables an excellent field representation of
the transmission resonance modes as can be seen from Figs. 6C) and 6D).

This example can be considered as a case of strongly coupled FP cavities where
the interaction is sufficient to introduce a significant separation of the resonance
frequencies. This is reflected in the positions of the defectQNM eigenfrequencies
of the defect structure. Our approximation method enables both an accurate field
representation and predicts the proper resonant transmission.
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Figure 3.5: A) QNM spectrum B) Transmittance for periodic and double cavity
structure; QNMs corresponding to complex frequencies in the bandgap region C)
QNM for ωL D) QNM for ωR.

3.3.4 Multiple cavity structure with flat-top narrow-band t ransmis-
sion

As last example we choose an asymmetric triple cavity structure with layer ar-
rangement coded as(HL)4L(HL)9L(HL)9L(HL)4, nH = 2.1, nL = 1.45,
nin = nout = 1.52, LH , LL-quarter-wavelength [6]. This structure introduces
three complex eigenfrequencies in the bandgap region, as shown in Fig. 7A). The
important feature is that it provides a narrow-band flat-toptransmission inside the
bandgap region as can be seen in Fig 7B). The closely spaced eigenfrequencies
and the corresponding QNMs are shown in Fig. 8. The proximityof the complex
frequencies reflects weak coupling between the three individual FP cavities formed
by the defects.

Fig. 9 shows the decomposition coefficients and the approximated transmit-
tance (compared with the TMM reference). The close proximity of the eigenfre-
quencies is reflected in the substantial overlapping of the frequency regions where
all three decomposition coefficients contribute. The field pattern in this region is
clearly produced by the combination of three relevant QNMs.Obviously all three
QNMs play a significant role over the whole transmission band. The approximated
field profiles for the transmission pass-band and the immediate bandgap region
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Figure 3.6: A) Decomposition coefficients. B) Transmittance obtained from the
field representation using QNMs (dashed) and TMM reference (continuous). C)
and D): approximated field obtained from the field representation using QNMs
(marker) and TMM reference for the frequency of transmission resonance (solid
line) for ω = Re(ωL) and)ω = Re(ωR).

agree well with the TMM reference, as shown in Fig. 10.
We wish to point out that direct TMM calculations are not suitable for esti-

mating the resonance origin of the transmission band.Also,some of the methods
used in literature, that estimate complex eigenfrequencies by matching the trans-
mittance spectrum to the Lorentzian lineshape functions and estimate eigenfields
through association of the TRMs with the QNMs, see [83] and references therein,
are not efficient in this case. Neither can estimates of the complex eigenfrequen-
cies and QNMs based on FDTD (finite difference time domain) simulations deal
easily with this type of structures with flat-top transmission, see [7] and references
therein.

In contrast our model permits to observe directly the relevance of the individual
QNMs at different frequencies (i.e. the magnitude of the expansion coefficients
ap).

3.4 Conclusions

We proposed a constructive way of connecting a quasi-normalmode (eigenmode)
description with transmission resonance properties for optical defect microcavities
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(unperturbed) structure, and B) transmittance.

in 1D multilayer structures. The approach is meant specifically for approximations
of the defect induced transmission modes existing in the bandgap of otherwise
periodical structures.

The field representation using a mirror field and the most relevant QNMs en-
ables very accurate field representations for field profiles in the transmittance prob-
lem. The approximated spectral transmittance agrees excellently with the TMM
reference. We emphasize the open and finite nature of the structures by directly
characterizing resonance properties via an investigationof the quasi-normal mode
spectrum.

Numerical examples suggest that the method is valid for single and multiple
cavity structures in both symmetric and nonsymmetric layerarrangements and both
weak and strong couplings between defects. Moreover, our method allows to ex-
amine directly the resonance nature of the transmission response in cases where
it is very hard to establish this from exact solutions of the transmission problem,
such as provided by the TMM method.

The approach quantifies directly the physical viewpoint, where the defect cavi-
ties are regarded as externally forced oscillators. The field representations obtained
using QNMs have a better foundation in the physics and natureof the realistic,
finite structures, when compared with methods that assumes periodic boundary
conditions for the structure.

We believe that our approach can be generalized to 2D and 3D structures as an
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acceptable characterization for both fields and response functions. Provided that
suitable QNM basis fields can be made available by analyticalor numerical means,
generalizations could be based on the functional representations of the frequency
domain Maxwell equations for higher dimensions [84],[85].
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Chapter 4

Coupled optical defect
microcavities in 1D photonic
crystals and quasi-normal modes

Abstract1

We analyze coupled optical defect cavities realized in finite one-dimensional Pho-
tonic Crystals. Viewing these as open systems where waves are permitted to leave
the structures, one obtains eigenvalue problems for complex frequencies (eigen-
values) and Quasi-Normal-Modes (eigenfunctions). Singledefect structures (pho-
tonic crystal atoms) can be viewed as elementary building blocks for multiple-
defect structures (photonic crystal molecules) with more complex functionality.
The QNM description links the resonant behavior of individual PC atoms to the
properties of the PC molecules via eigenfrequency splitting. A variational prin-
ciple for QNMs permits to predict the eigenfield and the complex eigenvalues in
PC molecules starting with a field template incorporating the relevant QNMs of
the PC atoms. Both the field representation and the resonant spectral transmis-
sion close to these resonances are obtained from a variational formulation of the
transmittance problem using a template with the most relevant QNMs. The method
applies to both symmetric and nonsymmetric single and multiple cavity structures
with weak or strong coupling between the defects.

1This chapter is adapted from: M. Maksimovic, M. Hammer, E. van Groesen,Coupled optical
defect microcavities in 1D photonic crystals and quasi-normal modes, Photonics West 2008 / OPTO
2008, Integrated Optics: Devices, Materials, and Technologies XII, Proceedings of SPIE,Vol. 6896,
2008
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4.1 Introduction

Photonic Crystal (PC) based devices attracted much interest in the past two decades
concerning both fundamental and applied aspects. Plenty ofmodeling and compu-
tational techniques are applied and well established [7, 9,6]. We consider 1-D
PC structures that can provide qualitative insight and means for interpreting the
physics of higher dimensional structures. More specifically, we consider planar
layered inhomogeneous media with piecewise constant refractive index as the tra-
ditional model of 1-D PCs. Although they belong to the field ofmultilayer optics
[4], an old and well explored field, a novel way of modeling these devices has
certain theoretical and practical interest for itself.

The open and finite nature of realistic structures is accessible by directly char-
acterizing resonance properties via an investigation of the quasi-normal modes and
associated complex frequencies. Quasi-normal modes (QNMs) are eigenfunctions
associated with the complex eigenfrequencies arising fromthe eigenvalue prob-
lem for outgoing waves [24]. The real parts of the complex eigenfrequencies are
connected with the transmission resonance frequencies (local maxima of the trans-
mission) and the imaginary parts with the Q-factors (or linewidth) of the resonant
transmission profile. Properties of the QNMs and related PC structures have been
addressed for 1-D PC structures in [65, 72, 77], while for 2-DPC structures the
theory is by far less often addressed and developed, with only partial results [81].

We specialize to finite PC structures with suitable defects in otherwise peri-
odic arrangements. These defects are forming Fabry-Perot cavities enclosed by
and separated by leaky mirrors that allow the exchange of energy between cavities.
These Coupled Optical Microcavites (CMC) already attracted research interest as
they provide means for the implementation of optical filters, resonators, delay lines
and other devices in both passive and active structures [6, 86, 87, 88, 89]. Refer-
ence method for analyzing one-dimensional structures is a Transfer Matrix Method
(TMM) [4]. A description in the framework of different coupled mode theory ap-
proaches has been a traditional way of analysis [84, 90, 91, 92], as far as inter-
acting optical waveguides (i.e., mostly systems with well confined optical states)
are concerned. However, an analysis of open, leaky structures directly based on
QNMs seems to be missing. This paper considers some possibilities for the direct
characterization of open cavities in 1-D PC structures using only the most relevant
QNMs.

Composite CMC structures can be viewed as being formed from simpler single
cavity structures or some other elementary building blocks. This decomposition is
usually quite arbitrary and can be done in many different ways for a given structure.
However, when the individual modes are well localized in thevicinity of their
respective cavities, a field template for the composite structure can be based on
the superposition of the individual cavity modes. In literature the basic structures
are sometimes called “photonic crystal atoms” which are theelementary building
blocks for more complex “photonic crystal molecules”. The key idea is that by
combining PC atoms with known properties more complex PC molecules can be
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obtained with engineered properties. Based on QNMs and a variational principle,
our procedure enables the derivation of the properties of the composite structures
in a constructive way using the known properties of the building blocks and certain
design rules for the composite structure.

In the context of CMCs, we address the splitting of eigenfrequencies by using
a variational principle together with the related QNMs of the individual cavities.
QNMs of the composite structure (super-modes) can be approximated by this ap-
proach. Further, we use the characterization of the CMCs in terms of quasi-normal
modes to describe approximately the resonant response to anexternal excitation
in the frequency domain and the related field profiles. The approximate frequency
domain description follows from a suitable variational formulation [25] for the
transmission problem, using the most relevant QNMs in establishing appropriate
field templates [93].

4.2 Theory

We consider 1-D optical structures in the frequency domain under external excita-
tion. The optical fieldE(x) excited by the external influxEinc = Aince

i(ninω/c)x,
with ω ∈ R andAinc given, for vacuum speed of lightc, satisfies the Helmholtz
equation

∂2
xE +

ω2

c2
n2(x)E = 0, (4.1)

on an intervalx ∈ [L,R], and transparent influx boundary conditions
(
∂xE + i

ω

c
ninE

)

x=L
= 2i

ω

c
ninAinc ,

(
∂xE − i

ω

c
noutE

)

x=R
= 0 (4.2)

at the boundariesx = L,R. The exterior regionsx < L andx > R are assumed to
be homogeneous with refractive indicesnin andnout, respectively. For structures
with piecewise constant refractive index an exact solutioncan be obtained via a
standard and well known transfer matrix method [4]; a brief explanation is given
in appendix 4.5. This serves as reference for the approximate models discussed
below.

Properties of passive, open optical structures with energyexchange between
the constitutive elements and the environment are capturedadequately by a formu-
lation of an eigenvalue problem for complex frequencies. A finite structure can
be viewed as an open system with transparent boundaries which permit the leak-
age of energy to the exterior, see Figure 4.1 A). The electricfield in the interior
x ∈ (L,R) satisfies the Helmholtz equation:

∂2
xQ +

ω2

c2
n2(x)Q = 0 (4.3)

with outgoing wave boundary conditions
(
∂xQ + i

ω

c
ninQ

)

x=L
= 0, and

(
∂xQ − i

ω

c
noutQ

)

x=R
= 0. (4.4)
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This constitutes an eigenvalue problem for the frequencyω as the complex eigen-
value and the field profileQ(x) as eigenfunction (Quasi-Normal Mode) [24, 26,
65, 72]. The eigenvalue problem is nonlinear because the eigenvalue appears in
the boundary conditions explicitly [26]. QNMs can be used tosolve the initial-
value problem of energy leakage out of a given open structure. The applicability
of QNMs for solutions of the transmission problems with given influx relies on
specific pseudo-orthogonality and completeness properties of QNMs when used as
a basis set for an eigenfunction expansion [65, 72].

A variational formulation of the QNM eigenvalue problem canbe based on the
functional [25]

Lω(Q) =
1

2

∫ R

L

(
(∂xQ)2 − ω2

c2
n2(x)Q2

)
dx (4.5)

− iω

2c

(
ninQ2|x=L + noutQ

2|x=R

)
.

If Lω becomes stationary, i.e. if the first variation ofLω(Q) vanishes for arbi-
trary variations ofQ, thenQ satisfies equation (4.3) with equations (4.4) as natural
boundary conditions. The value of the functional (4.5) withthe proper eigenfunc-
tion/ eigenvalue pair(ω,Q) inserted is zero, i.e.

Lω(Q) = 0. (4.6)

This property can be shown analytically by computing the partial derivative of the
first term in the (4.5).

We specialize to the analysis of optical defect modes existing in the bandgap
of the underlying periodic structure. To avoid using the full set of QNMs and
the completeness properties of QNMs to determine approximations of the optical
transmission and of the related field profiles, we apply a variational principle and
a specific field template that consists of QNMs associated only with the optical
defects. Details of this procedure can be found in [93] and inappendix 4.6.

4.2.1 Coupled cavities

We start with the QNMs(ω1, Q1), . . . , (ωN , QN ) for refractive index distributions
n1(x), . . . , nN (x) of simpler (not necessarily single cavity) structures. Solutions
of the eigenvalue problem for the composite structure are assumed to be well ap-
proximated by linear combinations of the QNMs belonging to the simpler struc-
tures. Therefore, we choose the field template

Q =
N∑

p=1

apQp (4.7)

which represents a restrictionLω(Q) → Lω(a1, . . . , aN ) of the solutions of the
original problem. Stationarity of the functional (4.5) transforms on the restricted
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Figure 4.1: The coupled optical defect structures considered in this paper are finite
periodic multilayer structures consisting of two materials with high indexnH and
low indexnL. The layer thicknessesdH , dL are chosen to be quarter-wavelength
for the target wavelength (related to a reference frequencyω0). Optical defects are
introduced as changes of the layer thicknesses or refractive indices in the otherwise
periodic sequence. The whole structure is enclosed by two semi-infinite media of
indicesnin andnout. A composite multiple defect structure A) can be decomposed
into usually simpler single defect structures B) and C).

set to the conditions

∂Lω

∂ap
(a1, . . . , ap, . . . , aN ) = 0, for p = 1, . . . , N, (4.8)

that can be written as an algebraic quadratic eigenvalue problem [94]

(
ω2M + ωN + P

)
a = 0 (4.9)

for the complex eigenfrequenciesω of the composite system. The eigenvectors
a = [a1, . . . , aN ]T are the unknown coefficients in the linear superposition (4.7)
of the single cavity QNMs. The elements of the matricesM = [Mlk]N×N , N =
[Nlk]N×N , P = [Plk]N×N are

Mlk = − 1

c2

∫ R

L
n2(x)QlQkdx,

Nlk = − i

c
(ninQlQk|x=L + noutQlQk|x=R) , (4.10)

Plk =

∫ R

L
∂xQl∂xQkdx.

Equation (4.9) enables the approximate solution of the eigenvalue problem for the
composite structure. It directly links the resonance behavior of the individual con-
stitutive elements (PC atoms) to the resonance properties of more complex struc-
tures (PC molecules), i.e. describes the eigenfrequency splitting. Both resonant
frequencies and the related Q-factors can be estimated. Influences of the external
and internal confinement (type, length and strength of the “mirrors” in the struc-
ture) or perturbations of various parameters can be directly analyzed.

Usually the decompositions of the composite structure, i.e. the precise choice
of the elementsQp in (4.7) is to some degree arbitrary. Supporting arguments can
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be based on results from direct computations, on physical intuition, but also on the
following observation. For fieldsQl with associated frequencyωl and refractive
indexnl that satisfy (4.3), (4.4), equation (4.9) can be written as

S a= 0, (4.11)

where

Slk =

∫ R

L

ω2n2(x) − ω2
l n

2
l (x)

c2
QlQkdx (4.12)

+
i(ω − ωl)

c
(ninQlQk|x=L + noutQlQk|x=R) .

If the trial field includes the exact solution for the composite structure with the
propertyω = ωl then (4.11) is satisfied. Expression (4.12) suggests that the refrac-
tive index distributionsnl of the simpler structures in the decomposition should be
chosen as close as possible to the exact structure (refractive indexn).

4.2.2 First order perturbation correction for complex eigenfrequen-
cies

We look for corrections of the complex eigenfrequencies fora given structure when
small, localized perturbations of the permittivity are present. A first order pertur-
bation correction for the complex eigenvalue can be obtained by using (4.5) and
a known QNM eigenpair(ω0, Q0) of the unperturbed problem with refractive in-
dex distributionn0(x). It is reasonable to assume that a small perturbation of the
original structure does neither change substantiality theposition of the complex
eigenfrequencies in the complex plane nor the shape of the corresponding QNMs.
We consider a permittivity perturbation in the form

n2(x) = n2
0(x) + n2

p(x). (4.13)

For small (in effect) perturbationsn2
p we look for a first order correctionω1 to the

eigenfrequencyω = ω0 + ω1. Variational accuracy guarantees that the eigenfre-
quency is determined up to first order if the eigenfunction isknown up to zeroth
order (solution of the unperturbed structure). Upon restricting (4.5) to the zeroth
order field approximationLω(aQ0) → L(a), the stationarity condition on the re-
stricted set

∂L

∂a
(a) = 0 (4.14)

gives an equation for the eigenfrequency correction. Keeping only the first order
terms inω1 and using the property (4.6) satisfied by the eigenpair(ω0, Q0) of the
unperturbed problem, the correction to the complex eigenfrequency reads

ω1 = −ω2
0

c2

∫ R

L
n2

p(x)Q2
0dx

2
ω0

c2

∫ R

L
n2

0(x)Q2
0dx +

i

c

(
ninQ2

0|x=L + noutQ
2
0|x=R

) . (4.15)

74



Chapter 4. Coupled optical defect. . . 4.3. Results and Discussion

Obviously this procedure is closely related to the theory of(4.2.1); it may be
viewed as a “coupled mode theory” with only one mode in the template (4.7). It is
possible to extend this method and to derive both corrections to the eigenvalue and
to the eigenfunction up to arbitrary order using a variational principle. An iterative
procedure for higher order corrections will be reported elsewhere.

4.3 Results and Discussion

A series of examples of CMCs serves to validate the describedmethods. First,
we apply the variational principle of Section 4.2.1 for approximating supermodes
in a double-cavity structure using known QNMs of the individual single cavities.
Second, the variational form of first order perturbation theory for QNMs (Section
4.2.2) is used to analyze shifts of cavity resonances subjected to local perturbations
of the refractive index. Third, the method of appendix 4.6 isapplied to estimate
the transmission on the basis of a few, most relevant QNMs. Finally, we con-
sider multiple-defect structures designed to operate in weak and in strong coupling
regimes. Also here our variational approximation method links the resonant trans-
mission to the underlying QNMs.

4.3.1 Double cavity structure

Consider a layer arrangement coded as(HL)M1D(LH)M1 , whereM1 = 4 is the
number of layer pairs in two mirrors that enclose a single cavity, with nH = 3.42,
nL = 1.0, between two semi-infinite media of the same refractive index nin =
nout = 1.0. The defect is introduced as a central layer of thicknessdD = 2dH

with high refractive indexnD = nH . A complex QNM eigenfrequency associ-
ated with the defect is present in the bandgap region of the related periodic struc-
ture. This eigenfrequency has an imaginary part that is several orders of magnitude
smaller (absolute value) than all other eigenfrequencies in the QNM spectrum [93].
Usually this is a sign of a strong localization of the field, i.e. for efficient energy
trapping in the vicinity of the defect.

The combination(HL)M1D(LH)M2LD(LH)M1 of two of these single cavity
structures constitutes a multilayer arrangement with two defects and three mirrors
(two enclosing mirrors of “length”M1, one separating mirror of lengthM2). The
defects form two Fabry-Perot-like resonant cavities with two corresponding QNMs
and eigenfrequencies, see Figure 4.2 A). These eigenfrequencies correspond to
two transmission resonances (Figure 4.2 B) ). The resonant response of the double-
cavity structure (the PC molecule) can be viewed as being generated through eigen-
frequency splitting from the resonance of the single cavities (the PC atoms). By
changing the numberM2 of pairs in the separating mirror one can control the inter-
action strength between the two cavities, where the relative distance of the complex
frequencies reflects weak or strong coupling. If the separation is small, the over-
lap of the individual QNMs is substantial, which results in astrong separation of
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eigenfrequencies. Increasing the separation leads to close eigenfrequencies and re-
sults in the formation of a transmission pass-band. With a field template (4.7) that
consists of a linear superposition of the two QNMs associated with the individual
left and right cavities, the procedure of Section 4.2.1 permits the estimation of both
eigenfrequencies and QNMs of the PC molecule. According to Figure 4.2 this is an
excellent approximation even for quite moderate cavity separationsM2 with rather
strong interaction.

In contrast to the composite structure, the permittivity profiles that constitute
the PC atoms do not show a particular symmetry (cf. Figure 4.1). Hence the QNMs
associated with the individual cavities do not exhibit a special symmetry. When
the decomposition is performed properly, however, their symmetric and skew-
symmetric linear combinations approximate the symmetric and skew-symmetric
supermodes of the composite structure, see Figure 4.2 C) andD).
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Figure 4.2: A): complex eigenfrequenciesω for the double cavity structure, direct
computations and CMT approximations for different lengthsM2 of the separation
region; B): transmittance, direct TMM calculation; C), D):QNMs (supermodes)
for the double cavity structure withM2 = 5, direct computation (continuous) and
CMT approximation (dashed).

Further, the variational method of appendix 4.6 allows to characterize the con-
tributions of individual QNMs to the spectral transmission. Figure 4.3 compares
two different settings: The template (4.21) for the transmission field can be based
either on the two (exact) supermodes of the PC molecule, or onthe QNMs sup-
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Figure 4.3: Transmittance (large axes, A), D); direct TMM computations and CMT
model, superimposed curves) and coefficientsap for approximations (appendix
4.6) to the transmission problem, if the template (4.21) includes either the two
exact supermodes of the composite structure (left insets B), E) ) or alternatively the
QNMs associated with the individual left and right cavities(right insets C), F) ).
The upper plots A), B), C) correspond to a moderate cavity separationM2 = 5, the
lower plots D), E), F) to a setting withM2 = 8, i.e. with weaker interaction.

ported by the PC atoms. In both cases the resulting approximations for the trans-
mission are indistinguishable (on the scale of the figure) from the TMM reference.
Especially interesting is the weak coupling regime, where the direct computation
based on the TMM method can not easily explain the resonant character of the
transmission band. However, examination of the relevant complex eigenvalues,
of the QNMs, and of the expansion coefficients describes completely the resonant
character of the transmission band.

Perturbation of the double cavity structure

The perturbation theory from Section 4.2.2 is applied to analyze eigenfrequency
shifts due to small local perturbations of the cavity refractive index. Below we look
at both symmetric and asymmetric perturbations of the symmetric original struc-
ture. The perturbative correction for QNMs estimates reasonably, in first order,
both real and imaginary parts of the complex eigenfrequencies. This can be traced
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further to changes of the transmission, i.e. to the positionof resonance frequencies
and the related Q-factors. Figure 4.4 introduces the specific configuration.

Figure 4.4: Perturbation of a CMC by localized refractive index changes. The
double cavity structure is encoded as(HL)4H(2L)(HL)8H(2L)(HL)4H. The
individual layers with alternately high (H) and low refractive index (L) are quarter-
wavelength withnH = 1.5, nL = 1, nin = nout = 1. Two low index layers
with larger half-wavelength thicknessdD form the two defects. Perturbations are
introduced as local changes of the permittivityn2 = n2

L(1 + p) in the middle of
the defect layer with a thickness ofdp = dD/5 andp ∈ (0, 0.05).

First we consider an asymmetric perturbation, where the refractive index of
only one of the defects is raised locally. According to Figure 4.5, this leads not
only to shifts in the positions of the eigenfrequencies ( A) ), but also to dramatic
changes of the transmission response ( B) ). The perturbation corrections (4.15) are
obtained here with the QNMs (supermodes) of the original composite structure.
Figure 4.5 A) shows the paths of the eigenfrequencies in the complex plane for
varying strengthp of the perturbation, where the influence of the refractive index
change has been evaluated by expression (4.15) on the one hand, and, for compari-
son, by direct TMM calculations on the other hand. As expected, the straight lines
given by the first order perturbational expression are tangential to the reference
paths. In this case the range of a reasonable approximation level is rather limited,
because the perturbation destroys the overall symmetry of the structure.

If, in contrast, both cavities are perturbed in a symmetrical way, the results of
the perturbational procedure are accurate over a much larger range of perturba-
tion strengths, as seen in Figure 4.5 C). Now the eigenfunctions of the perturbed
structured retain their symmetry, i.e. the assumption thatthe QNM of the original
structure forms an acceptable approximation to the perturbed configuration is ap-
parently better justified. For both the symmetric and the asymmetric perturbation,
the variational procedure of appendix 4.6, in Figure 4.5 B) and D) applied with the
supermodes of the perturbed composite structure in the template, gives accurate
results for the spectral transmission through the double cavity structure.
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Figure 4.5: A), C): complex eigenfrequencies for the doublecavity structure of
Figure 4.4, direct computations and first order perturbation theory approximations;
B), D): spectral transmittance, QNM approximation (appendix 4.6) based on ex-
act QNM supermodes, and TMM reference; asymmetric ( A), B) ) and symmetric
perturbations ( C), D) ).

For the asymmetrically changed double cavity configurationof Figure 4.5 A)
we observed that the perturbational expression (4.15) grossly over- or underesti-
mated the QNM eigenvalue correction. This was attributed tothe fact that the
underlying field template could not respond to the broken symmetry of the per-
turbed structure. It is thus intriguing to try a modified template that combines
separate QNMs of the two individual cavities, i.e. to apply the theory of Section
4.2.1. Necessarily with this procedure one encounters a certain error already for
the approximation of the QNM supermode eigenfrequencies ofthe unperturbed,
symmetric structure (observe that this concerns a configuration with relatively low
refractive index contrast and strong interaction). Still,according to Figure 4.6 A),
the eigenfrequency shifts predicted by the CMT formalism cover the whole range
of perturbation strengths considered here with reasonableaccuracy, at least as far as
real parts are concerned. Plots B) and C) of Figure 4.6 show that the eigenfunctions
of the perturbed structure are indeed not even approximately symmetric.

4.3.2 Multiple cavity structures

First, we look at the multiple cavity structure (the PC molecule) that is formed by
repeating the former single cavity structure (the PC atom) according to the follow-
ing design rule. Repetition of the unit cellPCA1 = (HL)M1(2H)(LH)M1 , here
with M1 = 4, generates the molecule[PCA1, L]J , whereJ is the number of PC
atoms. The refractive indices are the same as given in Figure4.4 for the previous
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Figure 4.6: A): complex eigenfrequencies for the double cavity structure of Fig-
ure 4.4, direct TMM computations and CMT approximations, inthe case of asym-
metric perturbations. B), C), for or a perturbation strength p = 0.05: QNM profiles
obtained with CMT (dashed lines) and direct computation (continuous).

example. The plots A) and B) in Figure 4.7 show the complex frequencies and the
resonant transmission for PC molecules withJ = 2 andJ = 3, respectively. Ob-
viously these PC molecules operate in the weak coupling regime, as is reflected in
the proximity of the eigenfrequencies ( A) ) and in the characteristic transmission
pass-band ( B) ). The transmission, estimated according to the recipes of appendix
4.6 with directly computed QNM supermodes of the molecule, is in the excellent
agreement with the TMM reference. The number of relevant QNMs in the com-
posite structure is equal to the number of PC atoms; modifications of this number
permit a constructive tailoring of the transmission pass-band. For additional tuning
of the transmission that might be of interest, such as ripplesuppression (to opti-
mize for a flat-top response), one could adjust the strength (number of layer pairs)
of the mirrors, or add a certain degree of asymmetry to the final design [93, 6].

Second, we consider the molecule formed by repeating the unit cell PCA2 =
(HL)M1(2H)(LH)M2L(2H)(LH)M1 , with M1 = 4 and M2 = 2 (a strongly
coupled double cavity structure), coded as[PCA2, L]J . In Figure 4.7 the complex
eigenfrequencies ( C) ) and the spectral transmission ( D) ) are shown. This pro-
cedure represents the design of a multiple channeled filter with narrow bandpass
transmission. By proper adjustment of the inter cavity separation (i.e. of the cou-
pling strength), the relative position of the transmissionchannels can be controlled.
Additional unit cells contribute to the eigenfrequency splitting in such a way that
the split eigenfrequencies are close. Therefore, no additional transmission bands
appear but the width of the transmission pass-bands is narrowed.

Finally, a combination of the PC atomsPCA1 andPCA2 leads to an even
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Figure 4.7: A), B): complex eigenfrequencies and transmission for weakly coupled
multiple cavity structures[PCA1, L]J ; C), D): frequencies and transmission for
PC molecules[PCA2, L]J formed by repeating a double cavity unit cell in the
strong coupling regime.

more complex composite structure. The PC molecule is given by the sequence
PCM = [PCA1, L, PCA2, L, PCA1]. Figure 4.8 shows eigenfrequencies ( A) )
and the corresponding QNMs ( B)-E) ). The individual contributions of each atom
to the supermode profiles of the molecule are clearly visible. The eigenfrequen-
ciesω2 andω3 are the product of a weak coupling between the atomsPCA1 (the
single cavity structures), according to the shape of the corresponding QNMs ( D),
E) ). The eigenfrequenciesω1 andω4 originate fromPCA2 and are affected by
PCA1 only in the form of an increased confinement (i.e. a lower absolute value of
the imaginary parts of the eigenfrequencies). The transmission for the composite
structure exhibits a characteristic combination of both constitutive atoms. The high
transmittance peaks are caused by the resonances associated withPCA2, while the
transmission resonances ofPCA1 are modulated (here they are suppressed) by the
presence ofPCA2. In this case, light can not establish an efficient propagation
path from the leftPCA1 to the right one, because the frequencies supported by
PCA1 are inside the attenuation region ofPCA2, see Figure 4.7.

We like to emphasize here that the QNM analysis can be very useful for an in-
terpretation of results and for an accurate prediction of the outcome of transmission
experiments, as shown in the previous paragraphs. Here, theapproach establishes
a sound foundation of the concept of photonic crystal molecules, that cannot be
provided easily by direct TMM solutions.
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Figure 4.8: A): complex eigenfrequenciesω1 – ω4 of the PC molecule
[PCA1, L, PCA2, L, PCA1] formed by combination of the single and double cav-
ity atoms of Figure 4.7. The insets show the corresponding QNMs, whereω1, ω2,
ω3, andω4 are related to profiles B), D), E), and C). F): spectral transmission for
the composite structure.

4.4 Conclusions

In this paper we consider the open and finite nature of a specific class of PC struc-
tures by directly characterizing their resonance properties via an investigation of
the quasi-normal mode spectrum. A variational principle for QNMs allows to ap-
proximate the eigenfrequencies and QNMs of composite multiple cavity structures
by eigenfrequencies and QNMs of simpler structures. Further, a constructive, re-
cently developed way [93] of relating a quasi-normal mode description to trans-
mission properties of optical defect microcavities in 1D PCs is applied. Detailed
remarks about alternative existing methods can be found in [93].

We specialize to defect structures that support transmission modes in the bandgap
of otherwise periodical structures. Numerical examples show that the method is ap-
plicable for both symmetric and nonsymmetric layer arrangements and both weak
and strong coupling between defects.

A form of coupled mode theory for finite, open 1-D PC structures is proposed,
that uses directly the most relevant QNMs. Closely related,an expression for a first
order perturbation correction of the complex eigenfrequencies is derived by means
of variational restriction. In contrast to other methods that use different types of
basis fields and rely either on a tight-binding approximation [86, 89] and/or on
supercell methods [87, 88], with our approach the finite nature of the individual
building blocks in the composite structure is fully respected.

Further, we analyzed a series of characteristic examples ofmultiple cavity
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structures and were able to point out characteristic features in the composite struc-
tures as originating from simpler structures. The results suggest that the notion of
the photonic crystal molecules can be founded on the QNM analysis as considered
here. Together with our variational approximation method,the QNM analysis of-
fers a resourceful method for the interpretation of complexphenomena associated
with the resonance properties in 1-D PC structures.

Provided that suitable QNM basis fields can be made availableby analytical or
numerical means, possible generalizations to 2D and 3D structures could be based
on suitable functional representations of the frequency domain Maxwell equations
for higher dimensions [85].

4.5 Appendix A: Transfer matrix method

For structures with piecewise constant refractive index distribution inside a fi-
nite spatial domain a method for solving both the transmittance and eigenvalue
problems is the well known transfer matrix method (TMM) [4].Solutions of the
Helmholtz equation are given as combinations of left- and right-traveling waves in
thej-th layer

Ej(x) = Aje
ikj(x−lj−1) + Bje

−ikj(x−lj−1) (4.16)

for x ∈ [lj−1, lj ] in a region of constant indexnj wherekj = njω/c is the wave
number in this layer. To connect the fields inside all layers we impose continuity
conditions at the interfaces:

Ej(lj) = Ej+1(lj), and ∂xEj(lj) = ∂xEj+1(lj). (4.17)

These conditions lead to a system of equations that can be represented in matrix
form. Ordered multiplication of the relevant matrices connects amplitudes in each
layer of the structure, as well as the amplitudes in the incidence and output regions:

(
Ain

Bin

)
=

(
m11(ω) m12(ω)
m21(ω) m22(ω)

)(
Aout

Bout

)
. (4.18)

The transmittance problem with incoming wave from the left is solved withBout =
0 for specifiedAin (amplitude of the incoming wave) with given real frequency
ω ∈ R. The amplitude transmission and reflection coefficients areexpressed as

t(ω) =
Aout

Ain
, and r(ω) =

Bin

Ain
. (4.19)

If we choose conditionsAin = Bout = 0, i.e. restrict the exterior solutions to
purely outgoing waves, the eigenvalue problem with outgoing wave boundary con-
ditions is addressed. With these conditions the system of equations can be nontriv-
ially satisfied if

m11(ω) = 0. (4.20)
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Analytic continuation of the transfer matrix into the complex plane enables us to
find solutions of (4.20) as complex eigenvaluesω [23]. By substituting the eigen-
value into the field representation (4.16) we obtain the corresponding eigenfunc-
tion, up to a complex constant. To solve (3.15) we apply a numerical iteration
procedure of Newton type [61]. In cases when that method fails to converge due
to closely spaced eigenvalues, we use a more powerful technique for determining
complex solutions, based on the argument principle method from complex analysis
[82].

4.6 Appendix B: Variational QNM model of the transmis-
sion problem

We specialize to finite periodic structures that possess transmission properties with
a bandgap, i.e. with a region of frequencies of very low transmission. Breaking the
periodicity of the structure can give rise to defect resonances inside the bandgap.
Approximation of the spectral transmission and of the associated field profiles for
these resonances is the aim of our analysis. Therefore, we choose a field template
for the transmittance problem as

E(x, ω) ≃ Emf (x, ω) +
N∑

p=1

ap(ω)Qp(x), (4.21)

wherep is an index countingN relevant QNMs, i.e. those with the real part of
their complex frequency in the given frequency range. We showed in terms of
the successful application of the template (4.21), that thetransmission resonances
associated with the defects are excited by the “mirror” fieldEmf of the periodic
structure without defect, which for frequencies inside thebandgap is an almost
completely reflected wave with only a weak tail that extends into the interior of
the structure. Therefore, this template (4.21) quantifies the notion of a forced reso-
nance response that appears because the incident wave possesses a real frequency
close to the real part of the complex eigenfrequency of a suitable QNM supported
by the defect structure.

This is only an approximate model for the transmittance problem in specific
frequency regions, since neitherEmf nor Q satisfy all of equations (3.2)-(3.3).
The residuals can be viewed as contributions from other QNMsin the complete set
supported by the defect structure, that are not included in (4.21). To find the de-
composition coefficientsap, we use a variational form of the transmittance problem
[25]. The transmittance problem corresponds to the equation and natural boundary
conditions, arising from the condition of stationarity of the functional

L(E) =
1

2

∫ R

L

(
(∂xE)2 − ω2

c2
n2(x)E2

)
dx (4.22)

− iω

2c

(
ninE2|x=L + noutE

2|x=R

)
+ 2i

ω

c
ninAincE|x=L.
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If L becomes stationary, i.e. if the first variation ofL(E) vanishes for arbitrary
variations ofE, thenE satisfies (3.2), and (3.3),(3.4) as natural boundary condi-
tions. Restricting the functional (4.22) to the field template (4.21),L becomes a
function of the coefficientsap, for givenEmf andQp. The stationarity conditions
then read

∂L

∂aq
(a1, a2, . . . , aN ) = 0, q = 1, . . . , N. (4.23)

The optimal decomposition coefficients are obtained as solutions of a linear system

A a = −b, (4.24)

wherea = [a1, a2, . . . , aN ]T is the vector of coefficients to be determined by solv-
ing the system of equations (4.24).A andb are calculated according to (4.21, 4.22,
4.23); explicit expressions are given in [93]. For given frequencyω one thus ap-
proximates the field profile for a transmission problem with aspecific incoming
wave. Spectral information (transmittance, reflectance) can be obtained by repeat-
ing this procedure for a series of frequencies. The transmittance reads

T (ω) =
1

|Ainc|2
nout

nin

∣∣∣∣∣∣
Emf (R,ω) +

N∑

p=1

ap(ω)Qp(R)

∣∣∣∣∣∣

2

. (4.25)

We showed in [93] that the mirror field is necessary for approximating the in-
coming part of the transmission field on the whole spatial region occupied by the
structure. However, an additional approximation that is analytical in form can be
obtained without the mirror field when only the spectral transmittance profile is
considered. In cases where the underlying periodic sequence forms a good mirror,
i.e. provides a high reflectance over the bandgap region, themirror field could be
omitted from the field template. This is possible because themirror field contribu-
tion in the relevant terms of (4.24) becomes negligible for the field at the end of the
structure where only outgoing waves are present. Then this approach can be seen
as an alternative projection technique for a QNM expansion.
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Chapter 5

Negative index metamaterials
and thermal radiation

ABSTRACT

In this chapter we briefly review some of basic properties of the negative index
metamaterials. Also, we address some novel properties of the bandgap structure
and transmission spectra obtained by the introduction of NIM in the construction
of the infinite and the finite multilayers. Finally we briefly review some basics
concerning thermal radiation and multilayer structures.

87



Chapter 5. Negative index. . . 5.1. Negative index metamaterials

5.1 Negative index metamaterials

Negative index metamaterials are artificial composites, characterized by subwave-
length features and negative real part of the refractive index of the homogenized
structure. Usually they are made of an ordered or random arrangement of unit
cells, i.e. elementary ”particles”, that furnish effective electromagnetic response
functions permittivity and permeability. A mathematical procedure in which the
complicated microscopic electromagnetic fields existing in the inhomogeneous
medium are replaced by macroscopic fields that are smoothly varying is called
homogenization. Then information on the microscopic properties of the medium
is discarded and the wave propagation becomes sensitive only to macroscopic, av-
eraged properties of the effectively homogeneous media [95, 36, 96]. The validity
of such a description is an issue in general, and the extraction of the effective,
averaged material properties is a difficult task with non unique solution. Heuris-
tically, the main prerequisite for the homogenization is the subwavelength nature
of the elementary electric and magnetic ”particles”. This means that the character-
istic length scales of the inhomogeneity are much smaller than the wavelength of
interest [31, 97, 34].

This is in contrast to other types of artificial structures and media introduced
recently in optics such as Photonic Band-Gap materials, where the features are in
the order of the wavelength, thus representing mesoscopic entities. Homogenized
effective electromagnetic response functions have been used for these structures,
despite of loose physical foundation, as a means of approximation for numerical
and qualitative investigations [7].

Negative index metamaterials were theoretically predicted in 1967 by Veselago
[32]. The concept relies on the analysis of the wave propagation in media with
simultaneously negative real parts of both permeability and permittivity, for which
the refractive index has to be chosen with a negative real part as well. Practically,
it seems that this type of material does not appear in nature,and therefore it has to
be artificially made.

The main obstacle in exploiting these ideas earlier were technological limita-
tions that did not allow the fabrication of the proposed materials and structures.
However, in the year 2000 Smith and Schurig performed an experiment in the
microwave range demonstrating the feasibility of the metamaterial concept with
simultaneously negative permittivity and permeability ina certain frequency range
and negative refraction [98]. They used a composite medium consisting of thin-
wires that furnish negative permittivity and split-ring resonators that furnish nega-
tive permeability.

The true explosion of the field came with seminal work of Sir John Pendry
and his proposal of a device named ”perfect lens” [99]. This is a device based on
a slab of the negative index media that resonantly amplifies the evanescent field
of an object and reconstructs both the far-field (propagating waves) and near-field
(evanescent waves) components and thus enables the perfectreconstruction of an
image. The perfect lens operates in a regime that exceeds thediffraction limit
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for an ordinary imaging device. This initial concept started much effort in the
research of metamaterials in the past several years. Although a perfect lens has
been shown to be of limited applicability in real-world situations, many theoretical
and experimental results have been obtained in the direction of imaging beyond
diffraction limit and improving and modifying other electromagnetic devices and
processes [100, 101, 102].

The major breakthrough is yet to come from possible realizations of negative
index metamaterials for the optical frequencies. The key obstacle is in the fact that
for the optical range there are no efficient materials with magnetic (permeability)
response in the linear regime. Negative electric (permittivity) response is achiev-
able with metallic materials and metallo-dielectric structures [103]. The advent
of nanotechnologies could lead to a breakthrough in the structuring of the ma-
terials for electromagnetic and optical applications withthe properties and func-
tionalities beyond those occurring in natural materials. Negative refractive in-
dices have been experimentally reported recently by several research groups, see
[40, 40, 41, 104, 105] and references therein. However, all designs used for opti-
cal wavelengths so far suffer from the very strong dispersion and high absorption
losses.

5.1.1 Permeability, permittivity and refractive index

Consider harmonic wave propagation in a linear, isotropic,and homogeneous ma-
terial. The Maxwell equations in the frequency domain then read

k × E = iωµ0µH, (5.1)

k × H = −iωǫ0ǫE. (5.2)

While the Helmholtz equation is

∇2E(r , ω) + k2E(r , ω) = 0 (5.3)

with the plane wave solution

E(r , ω) = E(ω)eik·r, (5.4)

where

|k|2 = k2 =
ω2

c2
ǫ(ω)µr(ω). (5.5)

Assume for the moment that permittivity and permeability are real. It is evident
from (5.3) that ifǫ andµ are of the same sign the medium supports propagating
waves, while for opposite signs of the response functions the waves are evanescent
with purely imaginary wave vector. This is depicted in Figure 5.1 and can be
used for a classification of different materials, dependingon the type of waves that
medium supports.
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Figure 5.1: Permittivity-
permeability (ǫ - µ) dia-
gram (real parts)for clas-
sification of materials and
types of supported waves.

For plane wave solutions it becomes important to choose appropriately the sign
in the expression for the wave number

k =
ω

c
n =

ω

c

√
ǫµ (5.6)

wheren =
√

ǫµ = nre + inim is the complex refractive index. Allowing now for
complexǫ andµ in the relation

(nre + inim)2 = (ǫre + iǫim)(µre + iµim) (5.7)

we have to consider conditions for the appropriate choice ofthe complex square
root. For simplicity, let us consider linearly polarized waves with z-dependent
electric and magnetic fields

E(z) = E0exp
(
i
ω

c
nz
)

, H(z) =
n

µrZ0
E0exp

(
i
ω

c
nz
)

(5.8)

whereZ0 =
√

µ0/ǫ0 is the intrinsic impendance of vacuum. Hence, the time-
averaged Poynting vector reads

Sz =
1

2
Re[E × H∗] = Re

[
n

µr

] |E0|2
2Z0

exp
(
−2

ω

c
nimz

)
(5.9)

In case of a passive possibly attenuating material one has torequirenim ≥ 0
[2, 30]. From , this condition leads to

nre =
ǫreµim + µreǫim

2nim
(5.10)

hencenre < 0 if an only if ǫreµim + µreǫim < 0. For causal and passive media
bothǫim > 0 andµim > 0 have to satisfied [2, 30, 106]. Then we are left with the
rule (1.38)

Re(n) < 0 if Re(ǫ) < 0 and Re(µ) < 0,
Re(n) ≥ 0 otherwise.

(5.11)
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If we express complex numbersz = zre + izim asz = |z|exp(iϕ), whereϕ =
arccot(zre/zim), then

n =
√

|ǫ||µ|exp

(
i

2

[
arccot

(
ǫre

ǫim

)
+ arccot

(
µre

µim

)])
. (5.12)

According to the Maxwell equations (5.1) and (5.2) when NIMsare considered,
the electric and magnetic field and wave vector form left-oriented set, in contrast
to the situation with positive indexE, H, k, Figure 5.2. This is the reason for name
left-handed materialsused in part of the literature

Figure 5.2: Electric
field-magnetic field-wave
vector triad [E, H, k] and
Poynting vector S for
propagating electromag-
netic waves, a) Positive
index medium (ǫ > 0,
µ > 0) b) Negative index
medium (ǫ < 0, µ < 0)

All causal materials are bound to be dispersive, because theelectric and mag-
netic polarizations depend on the history of the applied fields, thus responding non-
instantaneously to their influence [30]. Permeability and permittivity are in general
complex functions of the frequency where the imaginary parts are related to dissi-
pative processes in the material. Real and imaginary parts of the permeability and
permittivity are connected via Kramers-Kronig relations [1, 2].

Several common microscopic descriptions of materials leadto models of damped
oscillators [2]. The response of the elementary oscillators to the external excitation,
i.e. the time dynamic equations of motion of the polarization and magnetization,
in the presence of an oscillating electric and magnetic field, can be written in the
form

∂2
t P + Γe∂tP + ω2

reP = ǫ0ω
2
peE, (5.13)

∂2
t M + Γm∂tM + ω2

rmM = ω2
pmH (5.14)

whereωre(rm) is the resonance frequency of the electric(magnetic) dipole oscilla-
tors,Γe(m) is the damping frequency,ωpe andωpm may be interpreted as measures
of the strength of the interaction between the corresponding oscillators and the
electric and magnetic fields [31, 106]. Hence, the frequencydomain material re-
sponse functions are of the form of the Lorenz oscillator

ǫ(ω) = 1 −
ω2

pe

ω2 − ω2
re + iΓeω

andµ(ω) = 1 −
ω2

pm

ω2 − ω2
rm + iΓmω

. (5.15)

91



Chapter 5. Negative index. . . 5.1. Negative index metamaterials

Another model widely applicable for NIMs leads to a Drude-type dispersion (char-
acteristic for metals with free electron plasma)

ǫ(ω) = 1 −
ω2

pe

ω(ω + iΓe)
, andµ(ω) = 1 −

ω2
pm

ω(ω + iΓm)
, (5.16)

whereωpe(m) are the effective electric and magnetic plasma frequenciesandΓe(m)

are electric (magnetic) damping factors (usually expressed as a fraction of the
plasma frequency). This represents a model of an artificial electric and magnetic
plasma [13].

5.1.2 Energy density, phase and group velocity in NIM

The expression for the wnergy density in a linear, isotropic, lossless and nondisper-
sive medium gives a negative value for energy density if bothǫ andµ are negative.
In fact (1.28) can not be used in this situation because NIMs have to be dispersive;
this observation supports that requirement further.

If we consider a narrow radiation band and use a Taylor seriesexpansion about
the carrier frequency while retaining only the linear term,it is possible to derive an
expression for the energy density [2, 30]

W =
1

2

[
∂(ωǫ)

∂ω
E2 +

∂(ωµ)

∂ω
H2

]
. (5.17)

Equation (5.17) is applicable in the transparency regions,for frequencies suffi-
ciently far away from a resonance and with negligible absorption. Then, sufficient
conditions for the energy density to be positive definite under these approximations
are

∂(ωǫ)

∂ω
> 0, and

∂(ωµ)

∂ω
> 0. (5.18)

These are satisfied in the regions of normal dispersion far from resonances and for
all dispersion relations used to model artificial electromagnetic structures such as
metamaterials as well as ordinary materials [30].

Note, that (5.17) is derived under rather special conditions that may not be
satisfied in general. In other situations of interest, such as a frequency regions with
high absorption and anomalous dispersion, an expression for the energy density
stored in the dispersive medium can not be given in a closed form [30, 31].

In fact, interactions between waves and structured media associated with NIMs
are dynamical in their nature. Therefore, the steady state response of the NIMs ap-
pears only after a certain time interval necessary for all transient processes to finish.
Further, dispersion has to be present to ensure positive-definiteness of the energy
density and necessarily is accompanied by losses due to the Kramers-Kronig re-
lations [30, 13]. Therefore, according to the current understanding of NIMs, the
best performance that any possible design may achieve are atbest only enlarged
frequency ranges of moderate or small dispersion and losses.
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The phase velocity, i.e. the velocity of propagation of a plane of constant phase
reads

vp =
ω

k

k
|k| . (5.19)

It is clear that the sign of the phase velocity changes in NIMs. Therefore, some-
times termbackward-wave mediaor backward-phase velocity mediais used for
materials with this property [96].

Another important quantity is the group velocity, i.e. the velocity of propaga-
tion of the envelope of a wave packet [2]

vg = ∇kω(k). (5.20)

Further, in media with negligible absorption, it can be shown that group velocity
is equal to the energy flow velocity associated with the direction of the Poynting
vector, which does not depend on material properties [1, 2, 30]. Thus, negative
refractive index implies that the phase velocity is in the direction opposite to the
direction of the group velocity. Then, it is clear that phaseand energy velocity are
antiparallel. Note, that this discussion is applicable only for configurations with
negligible losses.

Still, all realizable NIMs are fundamentally bound to be dispersive and lossy.
Hence, the simple notions regarding phase, group and energyvelocity need to be
modified in general. Some caution in the analysis of the wave propagation in
regimes of anomalous dispersion and similar phenomena is necessary, see [30]
and references therein.

5.1.3 Photon momentum in NIM

The mechanical momentum density vectorD × B associated with the electromag-
netic field is parallel to the local Poynting vectorE×H both inside ordinary media
and inside NIMs [30]. This suggests that the linear momentumof a photonp and
the wave vectork are no longer parallel in NIMs. The linear photon momentum
and the wave vector are linked via the relation

p = ±~k, (5.21)

where the plus sign corresponds to situations where ordinary material are consid-
ered, and the minus sign is the appropriate choice for NIMs [30]. This simple
change may lead to interesting consequences such as reversal of light pressure
[32, 30]. Although, the proper definition of photon momentumfor a general dis-
persive and lossy materials is still a bit of a problem, both in classical and quantum
optics, it is applied when NIMs are considered, see [30] and references therein.
We use (5.21) in chapter 6 we review briefly the derivation of the Planck’s law in
linear, isotropic, dispersive NIMs with negligible absorption.
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5.1.4 Snell’s law and negative refraction

Let us consider a plane monochromatic wave

Ei = E0ie
i(ki·r−ωt) (5.22)

incident on a planar interface of two media characterizied by permittivities ǫ1(2)

and permeabilitiesµ1(2), see Figure 5.3. Then, the reflected wave and the transmit-
ted wave are

Er = E0rei(kr ·r−ωt), (5.23)

Et = E0te
i(kt·r−ωt). (5.24)

Magnetic field components may be obtained from (5.1) and (5.2). The wave num-
bers are defined via (5.5). The interface conditions accompanying Maxwell’s equa-
tions have to be satisfied for the fields at all points at the interface and at all times
[1, 2], and therefore a phase matching condition arises

(kr · r)z=0 = (kr · r)z=0 = (kt · r)z=0. (5.25)

The incident wave vector can be decomposed into its componentskix = ω
c ni cos(θi)

andkiz = ω
c ni sin(θi), as well as the other wave vectors in their components, see

Figure 5.3.

Figure 5.3: Phase-matching conditions and the positive or negative refraction at
the boundary between two media.

The phase-matching (5.25) conditions on the interface between the two media
leads to the laws of refraction Snell’law. The law of reflection is

θi = θr, (5.26)
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unchanged from the situation with usual materials [30]. TheSnell’s Law of refrac-
tion reads

ni sin(θi) = nt sin(θt), (5.27)

and it also holds for all materials, including NIMs. However, if nt < 0 then
θt < 0 and the transmitted wave is negatively refracted. Here, negative refrac-
tion is a simple consequence of the interface conditions forthe electromagnetic
fields. Note, that this type of negative refraction is fundamentally different from
negative refraction encountered with the Photonic Crystalstructures [7]. There, the
negative refraction effect arises in the diffraction process on the mesoscopic scale,
because structural properties vary on the scale of the wavelength and the propaga-
tion direction of the refracted wave on the interface between homogeneous media
and Photonic Crystal structure depends on the dispersion relation in a complicated
manner [9, 7].

Expressions for amplitude reflection and transmission coefficients, called Fres-
nell’s formulas for both TE and TM polarization, may be derived from the interface
conditions. They read for TE polarization

rTE =
Er0

Ei0
=

µ2kiz − µ1ktz

µ2kiz + µ1ktz
, (5.28)

tTE =
Et0

Ei0
=

2µ2kiz

µ2kiz + µ1ktz
. (5.29)

and for TM polarization

rTM =
Hr0

Hi0
=

ǫ2kiz − ǫ1ktz

ǫ2kiz + ǫ1ktz
, (5.30)

tTM =
Ht0

Hi0
=

2ǫ2kiz

ǫ1kiz + ǫ1ktz
. (5.31)

These relations are valid for general media that may be lossyas well. It follows
that the reflection coefficient may become zero for either polarization for a certain
incidence angle (Brewster angle) and properly chosen parameters [30, 37, 13].

5.2 Multilayers containing negative index metamaterials

5.2.1 Phase compensation effect

The important feature of multilayers and other structures with NIMs is the phase
compensation or the process of the partial or the full removal of the wave phase
shift after propagating through consecutive PIM and NIM layers. It is a conse-
quence of the sign reversal in the phase factorsδj = kjzdj in (1.55) for the fields
in the layers with NIM. For a general multilayer containing NIM, the phase com-
pensation influences greatly specific interference patternand modifies the spectral
transmission and reflection properties [43, 107]. In fact, the majority of unusual
properties associated with NIM-based structures arise from this effect [31].
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For simplicity let us consider TE-polarization and plane wave incident on bi-
nary grating consisting of two materials A and B with material propertiesǫA(B),µA(B)

and thicknessesdA(B). The transfer matrix (1.55) connects amplitudes in the adja-
cent layers. Hence, the phase-shifts areδA(B) = ±ω

c |nA(B)|dA(B) cos θA(B) where
the plus sign corresponds to the usual positive index material and minus sign to the

NIMs, andsA(B) = kjA(B)/µA(B) =
√

µA(B)/ǫA(B) cos θA(B). The correspond-

ing formal anglesθA(B) are connected by Snell’s law (5.26) to the incident angle.
Let us consider a special case of a normally incident wave on amultilayer in

which slabs withǫA = µA are in the airǫB = µB = 1. Thus, we havesA(B) = 1
and the transfer matrix becomes purely a phase-shift matrix

(
Aj

Bj

)
=

(
e−ikjzdj 0

0 e+ikjzdj

)(
Aj+1

Bj+1

)
. (5.32)

Therefore, the propagating wave does not experience any reflection at the interfaces
between the different layers. This situation is known as perfect matching, i.e. when
intrinsic impedance of the material slab is the same as the intrinsic impedance of
air (free space). For a finite multilayer withN layers as in Figure 1.2, the overall
transfer matrix reads

(
A0

rA0

)
=

(
e−i

∑N
j=1 φj 0

0 e+i
∑N

j=1
φj

)(
tA0

0

)
. (5.33)

where the phase shifts areφj = kjzdj = ω/c njdj . Then, the amplitude transmis-
sion coefficient is

t = ei
∑N

j=1
φj . (5.34)

The transfer function (5.34) is an all pass filter function [6]. For a NIM-containing
multilayer the overall phase shift could become zero

∑N
j=1 φj = 0 for N even,

which corresponds to full phase compensation.
Although the considered situation is idealized and can not be achieved fully due

to intrinsic dispersion and losses in NIMs it represents thebest example of phase
compensation. In fact, a fully phase-compensated and perfectly matched multilayer
represents a stack of Pendry’s perfect lenses [99]. This structure would perfectly
reconstruct both propagating (far field) and evanescent (near field) components
from object to image, see [31] and references therein.

In other, non-ideal cases when reflections exist at interfaces between layers
due to impedance mismatch, the presence of NIMs in the layer stack influences the
overall phase shift.

5.2.2 Periodic structures with NIMs and non-Bragg bandgaps

Consider an infinite periodic structure with alternating PIMs and NIMs layers. The
mathematical model outlined in chapter 1 is fully applicable for the bangap analy-
sis of these structures. Hence, the dispersion relation (1.72) determining bandgaps
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and pass bands can be obtained by solving (1.71). Phase compensation and pos-
sibilities for adjusting the reflection properties of interfaces up to the ideal perfect
matching case, can influence the bandgap structure greatly.The enlarged num-
ber of parameters with respect to just one for ordinary all-dielectric and metal-
dielectric structures enables extended photonic bandgap engineering. Several new
phenomena exist that cannot be observed for structures withordinary media.

It can be easily shown for a binary stack as in previous subsection that (1.71)
reads

cos(KBΛ) = cos (|kA|dA) cos (|kB |dB) ± Z2
A + Z2

B

2ZAZB
sin (|kA|dA) sin (|kB |dB).

(5.35)

whereZA(B) =
√

µA(B)/ǫA(B) is the characteristic impedance of layers A and

B. The minus sign corresponding to all-PIMs structure and the plus sign to PIMs-
NIMs structure [42].

Some specific conditions may be drawn directly from (5.35). If the optical
thicknesses are equal|nA|dA = |nB|dB then the right side of the (5.35) is always
greater then1. Thus, the spectral bandgap exists at all frequencies except for points
|kA|dA = |kB |dB = mπ, wherem = 0, 1, 2... is an integer. If in addition structure
is perfectly matched,ZA = ZB , then (5.35) reduces tocos(KBΛ) = 1 and for all
frequencies propagating waves are supported, i.e. bandgaps are not present. Addi-
tionally a structure may be designed to be omnidirectional,i.e. exhibit bandgap for
both polarizations [108].

An especially interesting situation arises with the so-called zero-n bandgap,
existing only for stack of alternating PIMs and NIMs layers [46]. It is a new type
of photonic band gap, different from the Bragg gap, that occurs when the averaged
effective refractive index of the whole structure equals zero

〈n〉 =
nAdA + nBdB

Λ
= 0. (5.36)

If dispersion is considered then (5.36) defines a characteristic frequency where
this bandgap appears. The zero-n gap is less sensitive to a change of the length-
scale (i.e. scaling the period) than the usual Bragg bandgaps, and also exhibit
reduced sensitivity to t small scale randomness in the material properties and the
thicknesses [46, 45]. It appears in periodic [46], quasi-periodic [47] and aperiodic
structures [48]. Structures operating in the zero-n regimemay be effective mirrors
with nearly omnidirectional and unit reflectance while thicknesses may be well be-
low the operating wavelength [45]. In addition, with properly adjusted parameters
these structures may possess complete omnidirectional bandgaps [44]. However,
some results suggest, that the condition〈n〉 = 0 may be only necessary but not suf-
ficient condition for bandgap opening; this holds especially when truncated, finite
multilayers are considered [109].

Defects in an otherwise periodic structure may give rise to defect states in the
bandgaps. These defect states may appear in the ordinary Bragg bandgaps or spe-
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cial zero-n bandgaps, where they appear to inherit some properties such as lower
sensitivity to the incidence angle [45, 110].

5.2.3 Transmission spectra of finite multilayers with NIM

Any finite structure can be characterized by it’s spectral reflection and transmis-
sion. As we already pointed out phase compensation can lead quite special spectral
characteristics of PIM-NIM multilayers. Most basic properties outlined for infinite
periodic structures are still present in the finite case.

Consider spectral transmission under normal incidence fora series of finite
multilayers with material propertiesǫA = ±2.25, µA = ±1, nA = ±1.5 and
ǫB = µB = nB = 1, while the external medium is assumed to be vacuum, the
same as material B. Plus and minus signs correspond to the choice of PIMs or
NIMs media. The thicknesses of the layers are chosen to be quarter-wavelength
|nA|dA = |nB |dB = λ0/4 with respect to a target wavelengthλ0 = (2πc)/ω0.
Figure 5.4 depicts transmission coefficients and field profiles computed using the
transfer matrix method described in section 1.2.2.

First, in Figure 5.4 A) the spectral transmittance for periodic multilayers, i.e.
Bragg mirrors, coded as(AB)8A, is depicted. Note, the difference betweenP −
N and P − P multilayers arising from the phase compensation in theP − N
structure. Here, the bandgap extends over all frequencies with the exception of
the discrete points (for the present finite structure regions around even multiples of
ω/ω0) as explained in the previous subsection. Characteristic interference pattern
in the transmittance of the ordinaryP − P Bragg mirror is removed. The unit
transmittance for a fully compensated and perfectly impedance matched multilayer
(here the stack withǫA = µA) is also depicted. In Figure 5.4 B) the distribution
of the field profile modulus|E(z)| in P − N multilayer for frequencyω/ω0 = 2
is shown. It has the characteristic of an extended transmission resonance field
distribution, similar to the ordinaryP −P structure. It shows that the origin of the
transmission resonance is the same as in the multilayer withordinary media. Note
that at the frequencies of the transmission resonance the layer thicknesses satisfy
the condition|nA|dA = |nB |dB = mλ0/2 with m = 0, 1, 2..., i.e. the condition
for absentee layers in the periodic multilayer [4].

Second, in Figure 5.4 C) the spectral transmittance for symmetric defectP−N
multilayer, coded as(AB)42A(BA)4 is shown. Introduction of the defect in the
otherwise periodic structure gives rise to a transmission resonance in the middle of
the bandgap. This defect resonance is of Fabry-Perot type, i.e. the periodic parts on
both sides of the multilayer play the role of mirrors enclosing the effective cavity
represented by the defect. This interpretation is further supported by inspecting
the distribution of the field profile modulus shown in Figure 5.4 D), where the
characteristic field localization and the enhancement in the vicinity of the defect
can be observed.
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Figure 5.4: A) Spectral transmission for the PIM-PIM, PIM-NIM and fully com-
pensated and perfectly matched (ǫA = µA), PIM-NIM multilayer, B) Local field
profile modulus for PIM-NIM multilayer at transmission resonanceω = 2ω0 C)
Defect PIM-NIM structure spectral transmission, D) Local field profile modulus
for defect resonanceω = ω0.

5.3 Thermal radiation and NIM materials

Thermal radiation is electromagnetic radiation associated with thermal phenomena
and heat transfer in material objects. It represents the fundamental physical process
of radiative energy transfer associated with microscopic events of electromagnetic
radiation emission induced by electron transitions in atoms, through phonon tran-
sitions associated with molecular rotational and vibration modes and crystal lattice
oscillations [49, 50, 111]. In terms of wavelengths, it covers the whole electromag-
netic spectrum, including the ultraviolet, visible and infrared range.

The investigation of physical phenomena associated with thermal radiation in
nature an engineering applications is an important part of both theoretical and ap-
plied science.

From the application point of view regarding NIM, one of the interesting ques-
tions is the spectral and angular distribution of thermal radiation in systems with
multilayer structures containing NIMs, for purposes of thermal radiation control
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and tailoring through the design of such multilayers.
The material properties and physical phenomena associatedwith thermal radi-

ation and heat transfer can be described only by taking into account both the clas-
sical and quantum nature of electromagnetic waves and theirinteraction with the
material objects [49, 50, 3, 51, 111]. However, in the case ofNIM-containing mul-
tilayers the situation is well modelled by classical electrodynamics, i.e. the propa-
gation of electromagnetic waves through optical structures. The relevant quantum
physical processes are taken implicitly, while our model deals with the interaction
of electromagnetic waves with matter using phenomenological and macroscopic
effective parameters.

5.3.1 Blackbody radiation and Planck’s law

An important concept when dealing with the thermal radiation is the blackbody or
the perfect absorber (emitter). This denotes an object thatabsorbs or emits all in-
cident electromagnetic radiation at all frequencies, withany polarization and from
all directions. The blackbody as a perfect absorber is a standard with which real ab-
sorbers are compared. The blackbody is also a perfect emitter at every frequency
and in all directions, while the total radiated power is a function of temperature
only. These properties follow from the thermodynamic principle of the detailed
energy balance in thermal equilibrium [49, 50].

Figure 5.5: Blackbody: mate-
rial object in thermal equilibrium
with the isothermal enclosure at
a constant temperature T.

The blackbody is an idealized object and can be only approximated by real
bodies. As illustrated in Figure 5.5 the usual approach to such an approximation
in experimental situations is to consider an absorber in an enclosure (cavity) with
perfectly absorbing boundaries. For such an object in thermal equilibrium the ab-
sorption and emission rates will be equal for the radiating walls of the enclosure
and for the absorber itself. Thus an isothermal situation isachieved. In this case
a constant temperature may be assigned both to the enclosingsurface and to the
object inside the cavity. If a small pinhole is made in the cavity wall, the electro-
magnetic radiation emerging from it will be very close to theradiation in the cavity,
i.e. it will be the nearly perfect blackbody radiation [49, 50].
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The blackbody power spectral distribution for EM radiationin thermal equilib-
rium at a macroscopic temperatureT and with frequencyω within homogeneous,
isotropic space is described by the Planck law [51, 50]

ρBB(ω, β) =
ω2

2c2

~ω

e~ωβ − 1
(5.37)

whereβ = 1/(kBT ) andkB is the Boltzmann constant and~ the reduced Planck
constant.

5.3.2 Kirchhoff’s law for thermal radiation

A phenomenological description of the macroscopic interaction between thermal
radiation and matter includes the processes of reflection, transmission and absorp-
tion. If radiation is regarded as an electromagnetic wave, it may be only reflected
from the surface, transmitted through the material object or absorbed within it,
see Figure 5.6. As already seen in Chapter 1, energy conservation may be quan-
tified through three phenomenological dimensionless quantities: the reflectance
R, the transmittanceT and the absorptanceA; all these quantities are defined as
ratios of the corresponding spectral power densities, usually described by the re-
spective Poynting vectors [49, 50, 51]. Energy conservation then requires that
R + T + A = 1.

Further, all material objects emit radiation within their volume and the radiation
may escape from the surface into the surrounding space. To quantify the emissive
properties, we define an additional phenomenological quantity E called emittance.
It represents the ratio between the energy emitted from the surface to the energy
emitted by a blackbody at the same temperature. The blackbody emittance equals
unity.

The relation between the emissive and the absorptive properties of a material
object in thermal equilibrium is expressed by the Kirchhofflaw. It states that the
spectral emittance and the spectral absorptance of a material object in thermal equi-
librium with its surroundings are equal for a given temperature and for every fre-
quency, direction and polarization:E(ω, T ) = A(ω, T ). This law can be obtained
from the thermodynamical principle of detailed energy balance in the equilibrium
that imposes an equality between the amount of energy being absorbed and emitted
per frequency at a given temperature [49, 50, 51]. It is strictly correct only for ther-
mal equilibrium in an isothermal enclosure. However, experimental observations
show that it approximates well the majority of practical situations where a local
thermodynamic equilibrium is maintained.

The thermal equilibrium of the whole system depicted in Figure 5.6 dictates
energy conservation and through the Kirchhoff law imposes arelation between the
following macroscopic quantities:

E(ω) = A(ω) = 1 − R(ω) − T (ω). (5.38)
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Figure 5.6: Absorption, reflec-
tion and transmission of radia-
tion incident on a material.

Then, the spectral power distribution can be obtained by multiplying the blackbody
power spectrum from Planck’s law (5.37) by the calculated emittance:

ρ(ω, β) = E(ω)ρBB(ω, β). (5.39)

Equation (5.38) is fundamental for the analysis of the emissive properties of ma-
terial objects. It establishes the basis of the indirect method for computing the
thermal emission properties of arbitrary material objectsthrough determining their
respective absorption. In [112] the emission properties ofhighly dispersive and
absorptive photonic crystals are calculated directly and then compared with the
predictions of the indirect method. The results suggests that indeed, in thermal
equilibrium, the indirect method gives an excellent agreement with the simulations
based on the direct method.

Thermal radiation seen as electromagnetic waves may have two different po-
larizations through the emittanceETE andETM for TE and TM polarizations re-
spectively. Unpolarized thermal radiation (blackbody radiation) is assumed to have
equal portions of both polarizationsE = 1/2(ETE + ETM ). We consider both
polarized and unpolarized emittance.

5.3.3 Thermal radiation antennas with multilayer structures

A thermal radiation antenna is a device that emits (absorbs)thermal radiation in a
certain frequency range and into (from) a certain direction. Thus, such a structure
possesses the properties of both selectivity and directionality, similar to the basic
traits of electromagnetic radiation antennas.

The theoretical foundations for photonic bandgap (PBG)-based thermal radia-
tion control have been outlined in [52]. Periodic structures with an intrinsic pho-
tonic bandgap alter the thermal radiation spectrum by modifying the photonic den-
sity of modes. Thermal radiation is suppressed at frequencies inside the photonic
bandgap, and enhanced at the frequencies of transmission resonances. In this way
a spectral redistribution of thermal power is achieved. This enables a control over
thermal emission processes. In the case of 1D structures such control is readily
implemented by the available thin-film technologies.
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A simple and straightforward approach to the computation ofthe modified
spectral emittance is to apply the mentioned indirect method [52]. It may be ap-
plied to determine the dependence of absorption both on the frequency and on the
incident radiation angle. The indirect method has been widely applied in literature
to investigate the possibilities of thermal radiation control by 1D, 2D and 3D PBG
structures, see [113, 114, 115, 55, 56] and references therein.

Figure 5.7: A general passive multilayer filtering system for thermal radiation con-
trol. The multilayer positioned on the top of a thick absorbing substrate enables
spectral and angular distribution shaping. The actual ordering of materials shown
in the multilayer will depend on the concrete design.

The design of thermal sources with the emittance enhanced ina narrow solid
angle through the application of a multilayer filter has beenof interest in the re-
cent period [53, 54]. The indirect method enables the designof a thermal radiation
control system by tailoring the properties of the multilayers applied as spectral
and angular filters. All structures used so far were either all-dielectric or metal-
dielectric multilayer coatings that enhanced or suppressed thermal emission of ab-
sorptive/emissive substrates [54]. These designs proved the practical feasibility of
spectral and angular control of radiation from thermal sources in the IR range. Thin
film technology has been a sound foundation for this task. Thepossibilities offered
by periodic all-dielectric or metal-dielectric PBG media [13] may be expanded by
the introduction of negative index metamaterials (NIM) [116, 117, 118]. The ad-
vances in the technology of nanostructured materials heralded NIMs for the optical
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range, see [13] and references therein. This offered new degrees of freedom in the
so far theoretical design of structures for thermal radiation control.

Indeed, the investigation of multilayers consisting of alternating dielectric (pos-
itive index material, PIM) and NIM layers showed novel properties convenient
for emittance/absorptance tailoring [116, 117, 118]. For instance, widening and
flattening of the spectral emittance was demonstrated, while at the same time
the angular dependence was much weaker [116]. Further possibilities for emit-
tance/absorptance tailoring are introduced by utilizing NIMs-containing pre-fractal
[117] and quasi-periodic multilayers [119, 118]. Excellent selectivity and direc-
tionality properties were observed in these structures, when considered as thermal
radiation antennas [117, 118, 120].

Figure 2 shows a general passive NIM-containing multilayerfilter for thermal
radiation control. It consists of a combination of positiveand negative refractive
index strata. This multilayer may be periodic, quasi-periodic or aperiodic and may
contain one or more defect layers. This configuration may be seen as a thermal
radiation antenna.

In chapters 7 and 8 we investigate the NIM-containing multilayers deposited
on a thick absorbing substrate. These structures simultaneously perform spectral
filtering and angular redistribution of thermal radiation.
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Chapter 6

Transmission spectra of
Thue-Morse multilayers
containing negative index
metamaterials

Abstract1

We study the optical transmission spectra in one-dimensional aperiodic Thue-
Morse multilayers composed from alternating layers of media with positive and
negative refractive index. We examine the influence of phasecompensation on the
spectral transmission for both on-axis and off-axis wave propagation. The origin
of the transmission resonances and their relation with the field localization are an-
alyzed. Nondispersive and lossless, as well as realistic dispersive and weakly lossy
materials are considered.

1This chapter is adapted from: M. Maksimovic, Z. Jaksic,Transmission spectra of Thue-Morse
multilayers containing negative index metamaterials, Acta Physica Polonica A,Vol. 112, No. 5, pp.
1055-1060, 2007
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6.1 Introduction

Negative refractive index metamaterials (NIM) are artificially structured media
with sub-wavelength features and with simultaneously negative dielectric permit-
tivity and magnetic permeability [31, 38, 13]. The direction of the Poynting vector
S in NIM is opposite to that of the wavevectork , i.e. electric, magnetic field and
wave vectors[E, H, k] form a left-oriented triplet. This is the reason why such
media were dubbed ”left-handed materials”, contrary to theconventional ”right-
handed materials” (positive refractive index, PIM). Largeefforts have been dedi-
cated to the NIM research in the recent years ([31, 38, 13] andreferences therein).
The operating wavelengths have been progressively decreasing and negative re-
fractive behavior has been observed in the optical range [105].

Multilayers with NIM part and with periodic [42, 46], quasi-periodic (Fibonnacci-
type) [121], or pre-fractal (Cantor-type) [122, 117] layerarrangements, attracted
attention due to their many peculiar properties with both theoretical and practical
interest.

We investigate non-periodic one-dimensional stacks composed of alternating
layers of media with positive and negative refractive index. The stacks follow
a design rule based on the model aperiodic Thue-Morse (T-M) substitution se-
quence [16, 17, 123, 124, 125]. All-PIM T-M type multilayerspossess interesting
and useful spectral properties, such as self-similarity, spectral scalability and well-
localized multiple resonances in their optical transmission spectra [16, 17, 123,
124, 125]. We employ the Transfer Matrix Method as outlined in chapter 1, sec-
tion (1.2.2) for numerical computations and analysis [15].Some results on T-M
multilayers with NIM are obtained in [47, 48] with the prediction of a new type
of a non-Bragg, zero-n bandgap (where the averaged value of the refractive index
in the structure is zero). We dedicate our attention to the resonances in the trans-
mission spectra and the field distributions associated withthem for finite structures
with both on-axis and of-axis wave propagation. The angulardependence of the
transmission spectra and of the resonances robustness withrespect to the phase
shift modulation are investigated. Transmission spectra of T-M multilayer with
dispersive and lossy NIM parts are considered.

6.2 Theory and results

A Thue-Morse substitution sequence can be defined via a binary alphabet{A,B}
and a set of simple mapping rulesA → AB, B → BA, with the symbolA as an
initiator. The first several T-M generations areA, AB, ABBA, ABBABAAB,
ABBABAABBAABABBA, etc.

A schematic presentation of T-M multilayers and of a single PIM-NIM inter-
face is shown in Figure 6.1. Even-order T-M multilayers possess a mirror sym-
metry in refractive index distribution. The number of elements in the sequence
increases in then-th generation as2n, while the number of different elementsA
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andB remains equal. We take two refractive indices(nA, nB) and physical lengths
(dA, dB) that correspond toA andB in the T-M sequence. The refractive index in
the incident and in the output medium is assumed to be equaln0 = 1.

Figure 6.1: Left: aperiodic structures composed of NIM and PIM strata arranged
as Thue- Morse sets for second, third and fourth generation;right: schematic pre-
sentation of a negative index-positive index material interface.

First, we chose frequency independent values of refractiveindicesnA = 1.41
(ǫA = 2, µA = 1), nB = −2 (ǫB = −4, µB = −1), for the purpose of comparison
with the prior results in literature without a loss of generality. We introduce the
reduced optical thicknessnAdA = αλ0, nBdB = βλ0, with the phase shifts in
the corresponding layers given asδA = 2παΩ cos(ΘA) andδb = 2πβΩ cos(ΘB)
, whereΩ = λ0/λ0 = ω/ω0 is the normalized frequency/wavelength withω0 and
λ0 being reference frequency and wavelength.

In the case of oblique incidence the angles of propagationΘA, ΘB are obtained
via Snell’s lawn0 sin(Θ0) = nA sin(ΘA) = nB sin(ΘB), whereΘ0 is the inci-
dence angle in the input medium. Whenα = β = 0.25 we are dealing with a
quarter- -wavelength optical thickness, which is the usualchoice in literature.

The interplay between the order and the phase compensation (partial or full
removal of the phase shift after propagating through a PIM-NIM structure) greatly
affects the spectral resonances in the stacks based on different ordering schemes.
Periodic multilayers with NIM exhibit wide band gaps and flattened transmission
[42] [43], as shown in Figure 6.2 a). On the other hand T-M multilayers exhibit a
similar behavior with the distinctive feature of the existence of resonances in the
middle of the Bragg band gap, as seen in Figure 6.2 b). Multiple resonances in
the spectra of all-PIM periodic or T-M multilayers are not present in the PIM-NIM
structures due to phase compensation, see Figure 6.2 c) and d). While the quasi-
periodic and pre-fractal Cantor NIM-containing multilayers possess self-similar
and scalable spectra for higher generations [122],[117] inT-M multilayers these
spectral properties are absent, even in the dispersionlessand lossless case.
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Figure 6.2: Direct comparison of transmission spectra for all-PIM (solid) and PIM-
NIM (dashed) periodic multilayer with 32 layers in stack a) and 5th generation
T-M multilayers b) and equal quarter-wavelength optical thickness. Transmission
spectra for 5th generation c) and 6th generation d) T-M multilayer.
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Figure 6.3: Intensity profile for normal incidence in all-PIM and PIM-NIM T-M
multilayer for 4th a), 5th b) and 6th generation c) andΩ = 1.

In PIM-NIM T-M multilayers only a midgap resonance atΩ = 1 is present for
normal incidence, due to a special spatial correlation in the T-M multilayer. The
field modulus distribution is identical for both all-PIM andPIM-NIM structures
and follows the structure of the T-M sequence, as shown in Figure 6.3. Alternating
symmetric and asymmetric arrangements of layers in successive generations of
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the T-M multilayers determines the nature of the spectral resonances, i.e. perfect
transmission exists in mirror symmetric structures even for oblique incidence. In
asymmetric multilayers a perfect transmission resonance at Ω = 1 exists only for
normal incidence and the quarter-wavelength optical thickness (equal phase shifts).

The resonance shift and the pronounced angular dependence,leading to the
appearance of multiple resonances for oblique incidence, as shown in Figure 6.4
A) and B) is in contrast with some predictions that the transmission spectra of
PIM-NIM structures are generally less sensitive to the incidence angle [42, 46, 43].
The number and the positions of transmission resonances arevery sensitive to the
modulation of the optical thickness [124, 125] which is clearly seen in Figure 6.4
c) for a 5th generation T-M multilayer (higher generations show similar behavior).

All NIM realized until now are dispersive and lossy, thus finally we choose
more realistic and very strong Drude-type dispersion relations

ǫ(ω) = 1 −
ω2

pe

ω(ω + jΓe)
, µ(ω) = 1 −

ω2
pm

ω(ω + jΓm)
(6.1)

whereωpe(m) are the electric (magnetic) artificial plasma frequencies and Γpe(m)

are electric (magnetic) damping constants (which can be expressed as a fraction of
the plasma frequency [31]. We choseωpe = ωpm = ωp andΓpe = Γpm = Γp =
ωp10

−6, thus the refractive index of the NIM part reads

n(ω) =
√

ǫ(ω)µ(ω) ≈ 1 −
ω2

p

ω2
+ j10−6 and n(Ω) ≈ 1 −

Ω2
p

Ω2
+ j10−6 (6.2)

We assumed very small but still present losses, thus avoiding an electromag-
netic nihility (material parameters locally equal to zero). Parameters for the NIM
part are chosen in a such way that the physical thickness is given according to the
condition |nB|dB = 0.25λ0 for nB(Ω = 1) = −2 (andΩ2

p = 3), while the pa-
rameters in the PIM part are the same as before. In this way both modulations of
the scattering strength (refractive index contrast) and the phase shift are present
[124, 125]. Transmission spectra with many resonances appear Figure 6.4 d), but
without obvious special spectral properties arising from the order or the material
properties.

6.3 Concluding remarks

We have presented transmission spectra for the Thue-Morse multilayers com- posed
from alternating layers with positive and negative refractive indices. In contrast
to other non-periodic NIM-containing multilayers where self-similar and scalable
spectra occurred for higher generations, for T-M multilayers these spectral proper-
ties do not appear, even in the dispersionless and lossless case. While the periodic
structures with NIM exhibit wide band gaps, T-M multilayersexhibit transmission
resonances located at the midgap frequency of the periodic multilayer. The field
distribution at the resonance frequency suggests a common origin in both all-PIM
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Figure 6.4: Transmission spectra for oblique incidence: the 5th generation a) and
the 6th generation T-M multilayer b). Transmission spectrafor varying layer thick-
ness parameterα (with α+β = 0.5) at normal incidence and 5th T-M multilayer c).
Transmission spectra for normal incidence and with (strong) Drude-type frequency
dispersion in the NIM part and small loss d)

and NIM-containing multilayers connected with the existence of special spatial
correlation irrespective of internal mirror symmetry. Theposition of this resonance
is very sensitive to the incidence angle and the phase-shiftmodulation, suggesting
that the phase compensation is most effective in equal-phase shift structures. The
introduction of realistic material dispersion in the NIM material introduces both
phase shift and scattering strength modulation in the structure. This increases the
number of transmission resonances even under normal incidence conditions and
effectively diminishes the influence of the aperiodic orderand the phase compen-
sation. The prospect of a weak material dispersion in the NIMleads to a potential
for the application of the optical phenomena associated with aperiodic order.
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Chapter 7

Thermal radiation and 1D
periodic structures containing
negative index metamaterials

Abstract 1

We investigate modification of the thermal radiation power spectrum in 1D peri-
odic structures containing negative index materials. We utilized an approach based
on the Kirchoffs second law and applied the transfer matrix method to calculate
emittance and to obtain the power spectrum of the periodic structure on top of a
thick absorbing substrate. We analyzed both on-axis and off-axis radiation.

1This chapter is adapted from: M. Maksimovic, Z. Jaksic,Modification of thermal radiation
by periodical structures containing negative refractive index metamaterials, Physics Letters A, Vol.
342, No. 5-6, pp. 497-503, 2005
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7.1 Introduction

Negative index metamaterials (NIM) are artificial composite subwavelength struc-
tures with effective electromagnetic response functions (permittivity and perme-
ability) artificially tuned to achieve negative values of their real part [31]. These
materials were theoretically predicted by Veselago [32], experimentally confirmed
by Smith [126] and both experimentally and theoretically investigated by many
different teams in past years.

The underlying principle in constructing NIM relies on the appearance of ef-
fective permittivity and permeability both lower than zeroin the same well defined
frequency band. The analyticity of refractive index regarded as a complex func-
tion and the causality principle require that the real part of the refractive index also
be negative [106]. A consequence is that the product of the electric and magnetic
field vectors is antiparallel with the wave vector, i.e. we deal with backward waves
whose phase velocity is antiparallel with Poynting vector,while electric, magnetic
field and wave vector form a left-oriented set. This is the reason why such struc-
tures are sometimes called ”left-handed materials”.

Many interesting phenomena not appearing in natural media were predicted
and observed in double negative materials. These include negative refraction (the
reversal of the Snell’s law), perfect lensing [99], the appearance of subwavelength
resonant cavities [33], reversal of Cherenkov radiation [30] and many other appli-
cation in applied electromagnetics [97],[37].

An interesting topic of investigation is the distribution of electromagnetic modes
in layered structures incorporating negative index materials. The use of conven-
tional photonic crystal structures to modify thermal radiation was investigated by
Cornelius and Dowling [52]. Subsequent theoretical and experimental results on
the same topic include [113, 114, 115, 55, 56, 53, 54, 127]. Inthe case of wave
propagation through a structure consisting of a both positive refractive index ma-
terial (PIM) and NIM layers a very important phenomenon of phase compensation
occurs, which may be described as a partial or complete removal of phase shift of
an electromagnetic wave propagating through a PIM-NIM structure [12].

In [30, 128] a modification of Planck law in NIM was derived relying on a sim-
ple quantized field description. There are few other papers dealing with the quan-
tum field description of NIM-related phenomena and some interesting phenomena
that arise from it, like the modification of spontaneous emission and super-radiance
effect [129, 130, 131, 132].

In this chapter we investigate the modification of thermal radiation power spec-
trum by one-dimensional structures incorporating both NIMand conventional ma-
terials, emphasizing influence of phase compensation. We analyze periodic 1D
structures and include both normal and oblique wave incidence. We use an indirect
method based on the second Kirchhoff’s law for thermal radiation to investigate
the emittance of blackbody when a multilayer structure incorporating NIM is used
as a filter on a thick blackbody. In our calculations we use thewell known transfer
matrix technique [1, 2, 4]
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7.2 The Planck law in negative index metamaterials

Since metamaterials are structured on a subwavelength scale, it is assumed that
their magnetic and electric response can be described by effective permeability
and permittivity . A practice often met in literature when investigating NIM is
to analyze the cases with frequency independentǫ andµ as a first approximation
of the real materials [43],[46],[45, 45]. However, realizable metamaterial must be
dispersive and lossy in order to preserve causality principle [30, 31].

For the sake of simplicity we assume that both effective permittivity and per-
meability are of the same form

ǫ(ω) = 1 −
ω2

pe

ω(ω + iΓe)
, andµ(ω) = 1 −

ω2
pm

ω(ω + iΓm)
, (7.1)

and the effective electric and magnetic plasma frequenciesωpe(m) and electric
(magnetic) damping factorsΓe(m) are equalωpe = ωpm = ωp andΓpe = Γpm =
Γp. This choice simplifies the form ofǫ and µ. The refractive index of NIM
n =

√
ǫµ is thus

n(ω) = 1 −
ω2

p

ω(ω + iΓ)
. (7.2)

In our calculations, we assume that damping is negligible, which can be ac-
ceptable approximation in certain frequency range. When lossy metamaterial is
considered, a common assumption in literature is that the damping factor is given
as a fraction of plasma frequency [31].

An expression for the Planck radiation law in NRM media was obtained in
[128] by following a simple quantized-field description forradiation in negative-
index material, which was assumed to be isotropic, dispersive and absorptionless at
frequencies of interest. The approach was based on modified Einstein coefficients
of spontaneous emission and absorption in the light of a simple electric dipole
transition picture [51, 11] Similar results were obtained in [129, 130, 131, 132].

The same result can be obtained by a simple textbook approach[51, 111],
which is valid for any medium described by dispersive refractive index and thus
does not make a distinction between NIM and ordinary dispersive media. We apply
it in the following manner. The density of photon states per volume of a photon
set occupying a range of impulses(p, p + dp) is dG(p) = 2(4πp2dp/h3), where
p = ±~k andk is the photon wave vector; the multiplier 2 is due to the number
of polarizations andh3 stems from Heisenberg relations. We assume standard
boundary conditions at the boundaries of the volume [51]. The mean number of
photons is governed by Bose-Einstein distribution [111],thus the density of photons
is

dN(p) =
2

h3

4πp2dp

exp(cp/kBT ) − 1
. (7.3)

wherekB is Boltzmann constant andT is temperature. Further,p = ~ωn(ω)/c

and dp = ~ωγ(ω)n(ω)/c, whereγ(ω) = n(ω) + d(ωn(ω))
dω . These relations
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together with (7.3) lead to expression for density of photons per unit frequency
dN(ω)/(dω). Then, the spectral energy density defined is

ρ(ω) = ~ω
dN(ω)

dω
=

~ω3

π2c3

n2(ω)γ(ω)

exp(~ω/kBT ) − 1
. (7.4)

Expression (7.4) is the Planck’s law in homogeneous, isotropic, dispersive NIM
media with negligible absorption. It can be seen that (7.4) differs form the Planck
law for vacuum only in factor depending on dispersive properties of the medium:

ρNIM (ω)/ρvacuum = n2(ω)γ(ω). (7.5)

For the dispersion described by (7.2) modification factor for spectral power density
of equilibrium radiation for the space filled by NIM reads

n2(ω)γ(ω) =

(
1 −

(ωp

ω

)2
)2(

1 +
(ωp

ω

)2
)

. (7.6)

7.3 Thermal radiation and multilayers containing nega-
tive index metamaterials

We consider a system in thermal equilibrium at a given temperature, its radiation
having a Planck’s blackbody (BB) spectrum. From the point ofview of prospective
practical applications, the blackbody radiation may be modified using a photonic
crystal filter and thus altering the spectral emissivity of the BB radiator and/or
changing the angular distribution of the radiation. This was done in [52] for the
case of purely positive-media structures.

In a most general case the photonic crystal filter may have a full 2D or 3D
periodicity (or even be quasi-periodic) [7]. According to conditions outlined in
[52], qualitative predictions in that case can be from 1D model.

To calculate the modification of thermal radiation, it is necessary to determine
the thermal emittance E of the photonic crystal. This is doneby an ”indirect”
method based on the Kirchhoff’s law of detailed balance. According to it a mate-
rial’s emittance in thermal equilibrium is proportional toits absorbtance, and for a
blackbody they are equal, see chapter 5 and references therein. The absorptance is
defined by the reflection and transmission coefficientE = A = 1 − R − T.

Once the emittance is obtained, its multiplication by the Planck spectral power
density gives the power spectrum of the PBG emitterρPBG(ω) in terms of its
emittanceE(ω) and the blackbody spectrumρBB(ω) given by 7.4

ρPBG(ω) = E(ω)ρBB(ω) (7.7)

Fig. 1 represents a photonic band gap (PBG) structure selected to modify the
mode density of radiation of the emitting substrate S. In a general case it contains
both positive index materials and NRM. The structure inhibits thermal emittance
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Figure 7.1: Basic 1D multilayer structure for emissivity control.

from the substrate at frequencies within the PBG, but enhances it at the band-edge.
This result is confirmed for the case of all-dielectric and metal-dielectric positive
index PBG materials both theoretically [52] and experimentally [54, 127].

The structure is composed from two media with refractive indices (nA, nB)
and a geometrical thickness (dA, dB), A and B denoting the conventional and the
NIM slabs, respectively. The structure is deposited on a thick substrate (d >> λ)
with an indexnS. We chose layers with a quarter-wavelength optical thickness
nAdA = nBdB = λ0/4. Hence, the phase shifts in the corresponding layers
areδA = (π/2)Ω andδB = (π/2)Ω whereΩ = λ0/λ = ω/ω0 is normalized
frequency. The entire structure is surrounded by a mediumn0 (air or vacuum).

We chose a quarter-wavelength optical thickness for our layers to establish a
connection with prior experimental and theoretical work and to directly compare
our results to those previously published. More specifically, one encounters the
same choice of individual layers thickness in literature onabsorptance and emit-
tance tailoring by PBG structures [52] but also in papers on NRM-caused phase
compensation and its application for antireflection coatings, high-reflective coat-
ings, transmission filters, and many other functionalities[43],[46, 45]. While there
is no fundamental reason not to use a different optical thickness, quarter wave-
length appears to be the most frequently used approach for different optical ap-
plications and one gets a clear physical picture without a loss of generality. Only
a similar spectral behavior could be obtained by different choice of optical thick-
ness [4], [43], but it remains a question of practical implementation for a concrete
design.

The transfer matrix technique which includes material dispersion and absorp-
tive losses [1, 4] can be used to compute transmission and reflection coefficients
and the power spectrum. We apply it using interface matricesMAB ( at the inter-
face between media A and B) and propagation matricesMp (wherep ∈ {A,B, S}).

MAB = 1/2 [1 + nB/nA 1 − nB/nA; 1 − nB/nA 1 + nB/nA] (7.8)

Mp = [exp(−iδp) 0; 0 exp(+iδp)] , δp = 2πnpLp/λ. (7.9)

In the case of oblique incidence the above matrices retain the same form, but
one has to substitutenA(B) → nA cos(θA(B)) for corresponding refractive in-
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dices in the propagation matrices for both TE- and TM-polarization, andnA(B) →
nA(B) cos(θA(B)) for TE-polarization andnA(B) → nA(B)/ cos(θA(B)) for TM-
polarization in the interface matrices. The overall transfer matrix for the chosen
structure is given as a product of the interface and the propagation matrices [1, 4].
The transmission and the reflection coefficient of the given structure follow from
the overall transfer matrix which has the formM = [m11 m12; m21 m22] and are
expressed through the formulas

T =
1

|m11|2
and R =

∣∣m21

m11

∣∣2. (7.10)

In our investigation we consider isotropic media for both non-dispersive and dis-
persive cases.

One should note here that no plasmon modes interacting with the incident plane
wave and changing emittance spectra were taken into accountin this paper. The
reason is that a propagating plane wave incident on a flat surface cannot excite sur-
face plasmons regardless of its incidence angle, since the plasmon modes must have
a larger momentum at the same frequency for all energies considered [31]. Thus
no influence of the plasmon mode to the emittance characteristics can be expected.
To change this situation, one would have to provide an additional momentum to
disturb the plasmon mode, e.g. to use surface roughness, a grating structure or
similar. This is valid both in the case of positive and negative index materials [31].

7.4 Results and discussion

Figure 7.2 shows the calculated emissivity of 1D PBG structures versus frequency
and angle of incidence for different polarizations. Figure7.2 a) shows the emis-
sivity of an all-dielectric PBG material for unpolarized case. We obtained similar
dependencies for the all-dielectric structure for s- and p-polarizations (not shown
here). Figure 7.2 b)-d) show the calculated emissivity of NIM-containing 1D PBG
structures for different polarizations.

The dependence in Figure 7.2 a) illustrates a problem pertinent to all positive-
material PBG filters: such structures can either have an optimum performance in
a very narrow wavelength range for all incident angles, or for a larger wavelength
range, but for a very limited spatial angle.

This is not the case with the NIM-containing filters. Figure 7.2 b)-d) shows that
the angular dependence in emittance spectrum is much less prominent than in ordi-
nary PBG structures. This points out to the possibility of designing efficient NIM
filters almost insensitive on the radiation propagation angle. Structures containing
NIM influence differently the thermal radiation spectrum incomparison to ordi-
nary media PBG structure. The suppressed region of thermal radiation is wider,
and the spectral characteristics more flat, i.e. without sharp oscillation typical for
positive index materials. The influence of the angle of incidence is less noticeable
than for the corresponding ordinary structures. The emittance shows no ripples and
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Figure 7.2: Emittance as a function of incident angleθ and normalized frequency
ω/ω0 for NIM-containing 1D PBG structure,5 periods,nA = 1.41 ,nB = −2;
a) unpolarized case, positive index material,nA = 1.41, nB = 2. b) TE-mode
polarized emittanceETE ; c) TM-mode polarized emittanceETM ; d) unpolarized
E = 1/2(ETE + ETM ); In all casesnS = 3 + i0.3 for the substrate.

no sharp frequency shifts between polarizations. Such behavior is a result of phase
compensation, see Chapter 5 and references therein.

Further we considered a more realistic case with dispersiontaken into account.
We used the form (7.2), assuming thatΓ = 0. Figure 7.3 depicts the emittance
versus incident angleθ and normalized frequencyω/ω0 modified by dispersive
NIM for unpolarized case. We used the Drude model for the description of meta-
materials [31]. The dispersion we used wasnB(ω/ω0) = 1 − 3(ω/ω0)

2 where
ω0 is the quarter-wavelength frequency. We choseωp = ω0/

√
3 in (7.2), thus ob-

taining nB = −2 at ω/ω0 = 1, the same absolute refractive index value as that
used to calculate the dispersionless case in Figure 7.2. We further usednA = 2,
LA = 0.25λ0/nA, LB = 0.25λ0/nB andLS = 10λ0/Re(nS). The calculated
emittance in Figure 7.3 clearly shows the existence of full phase compensation in
the emittance spectrum (the peak values at the frequencyω/ω0 = 1.

Similar to zero-n photonic band gap [46, 110], also obtainedby stacking al-
ternating layers of positive index materials and NIM but furnishing transmission
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Figure 7.3: EmittanceE(ω/ω0, θ) as a function of incident angleθ and nor-
malized frequencyωω0 for unpolarized case with dispersion taken into account,
nB(ω/ω0) = 1 − 3(ω0/ω)2 and ω0 = 2πc/λ0 -quarter-wavelength frequency
(at this frequencynB = −2) nA = 2, LA = 0.25λ0/nA, LB = 0.25λ0/nB,
LS = 10λ0/Re(nS)

minimum, this phase compensated situation arises when the averaged effective re-
fractive index of the structure equals zero. The resulting narrow transmission peak
is almost invariant with respect to a length scale change andalmost insensitive to
angular dependence [45]. There is a shift toward higher frequencies in spectral
emittance for phase compensated situation in for larger angles. The same feature
can be observed both in periodic and in quasi-periodic spectra [118].
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Figure 7.4: Comparison of emittance for conventional multilayers and NIM for
different numbers of layer pairs N,nA = 1.41, nS = 3 + i0.3. nB = −2 for NIM
case andnB = 2 for conventional multilayer case.

Figure 7.4 show the changes of the spectral emittance with anincrease of layer
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pairs number for dispersionless NIM-containing multilayers with absorptive sub-
strate for the case of normal incidence. A comparison to the case of positive index
multilayer material is given. While the spectrum of the positive material becomes
progressively more complex with a layer number increase, the NIM-containing
multilayers dependence remains more flat, while the suppressed range is wider.
The observed spectral behavior of the NIM-containing structures is a consequence
of marked phase compensation. It suppresses the influence ofmultiple reflections
between individual layers and even completely removes it ata single frequency
corresponding to the fully compensated structure (zero phase shift). This results in
much less pronounced side ripples in spectral characteristics.

An increase of the number of layers spreads the band of suppressed emittance
instead of magnifying and multiplying the ripples like in positive index material
case. Generally, the interference spectra which are characteristic for the all-PIM
structures are flattened and spread due to phase compensation effects. This behav-
ior is observed in NIM-containing multilayers regardless of the fact if dispersion is
taken into account or not, since phase compensation occurs in both cases.

Another situation of interest for thermal radiation modification are non-periodic
filter geometries [119, 117], [118]. Their band structure are more complex com-
pared to periodic ones, which results in appearance of sharpresonance peaks [16].
Similar to periodic structures, non-periodic NIM multilayers also exhibit a strong
influence of phase compensation to transmission [122],[47,48]. Spectral self-
similarity and narrow resonance spectral peaks occurs, which has an applicative
potential itself. Also, defect based periodic multilayerswith NIM may be used for
emittannce tailoring [120].

7.5 Concluding remarks

We analyzed modification of Planck’s blackbody spectra by periodic structures in-
corporating NIM. Similar to positive-index photonic crystals to which such struc-
tures are related, they can be used to enhance, suppress or attenuate spontaneous
emission in all or certain directions by changing the density of modes. The paper
handles the case of finite structures. Our results show that structures containing
NIM show larger influence to the thermal radiation spectrum than all-dielectric
PBGs. The suppressed region of thermal radiation is wider, and the spectral char-
acteristics more flat, i.e. without sharp oscillation typical for the all-dielectric case.
It can be also seen that spectral properties of the NIM-containing 1D structures are
less dependent on the angle of incident radiation. The procedure presented here is
of interest in designing other types of non-periodic NIM multilayers for emittance
tailoring. The described approach, in principle, can be generalized to 2D and 3D
PBG materials incorporating NIM media.
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Chapter 8

Emittance tailoring by Cantor
multilayers containing negative
index metamaterial

Abstract1

We investigate electromagnetic wave propagation through one-dimensional stacks
of alternating positive and negative refractive index layers arranged as truncated
pre-fractal Cantor multilayers. We utilized the transfer matrix technique and ap-
plied the Kirchhoffs second law to calculate emittance and absorptance modifi-
cation of thick substrate by negative index metamaterial Cantor multilayers. We
took into account dispersion and absorptive losses and analyzed both on-axis and
off-axis radiation. We showed that Cantor multilayers formed by inserting nega-
tive refractive index layers as a substitution part in the multilayer lattices enable
tailoring of both spectral and angular dependencies of emittance/absorptance.

1This chapter is adapted from: M. Maksimovic, Z. Jaksic,Emittance and absorptance tailoring
by negative refractive index metamaterial-based Cantor multilayers, J. Optics A: Pure and Applied
Optics , 8 ,3,pp. 355-362, 2006
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8.1 Introduction

The artificial composite electromagnetic structures with simultaneously negative
permittivity and permeability are variously dubbed negative index metamaterials
(NIM) , left-handed metamaterials (LHM), negative phase velocity media [31, 30,
97], etc. Starting from the Maxwell equations with the appropriate boundary and
initial conditions and utilizing the general principles ofenergy conservation and
causality it can be shown that the refractive index of media with negative permit-
tivity and permeability is also negative [30, 32]. This results in various peculiar
properties of the NIM , e.g. the reversal of the Snell’s law orthe negative re-
fraction, reversal of Doppler shift and Cerenkov radiation, etc. In contrast to the
positive index media (PIM), in NIM the light propagates in the opposite direction to
the energy flow and the Poynting vector is anti-parallel to the wave phase velocity
vector [30].

A large body of research papers on the NRM has been published in the re-
cent years and many applications have been proposed, one of such being the so-
called perfect lenses operating beyond the diffraction limit [99]. In spite of tremen-
dous technological difficulties to fabricate shorter-wavelength NRM, the operating
wavelengths have been steadily decreasing in recent years and negative refractive
behaviour has been observed in the optical range [39, 40].

One of the topics of interest in optics of NIM is the distribution of electromag-
netic modes in NIM-containing multilayers. The role of conventional PIM (positive
index material) photonic crystals in modifying thermal radiation was researched
first by Cornelius and Dowling [52], then by different teams [127, 53, 54, 55, 133].
The influence of NRM to thermal radiation distribution was investigated in [116,
117, 119],[118],[120]. Important differences in comparison to the all-PIM case oc-
cur as a consequence of the phase compensation, a phenomenonarising in NIM and
resulting in a partial or full removal of phase shift of an electromagnetic wave prop-
agating through a PIM-NIM structure, see Chapter 5 and references therein. We
considered the modification of thermal radiation by periodical structures contain-
ing NIM in [116]. We showed that NIM-containing structures can be used to en-
hance or suppress thermal radiation spectrum considerablymore than all-positive
PBGs. The suppressed region of thermal radiation is wider, the spectral charac-
teristics more flat, and less dependent on the angle of incident radiation. Another
type of multilayers with interesting and potentially usable electromagnetic spectral
properties are quasi-periodic structures and fractal multilayers [16, 15, 134, 135].
Due to their structural self-similarity, these show spectral regularities in their trans-
mission/reflection, including spectral scalability (the whole spectrum of a given
generation repeats scaled as a part of the next generation spectrum) and sequen-
tial splitting (spectral peaks from one generation split into doublets in the next)
[136]. The strong resonances in spectral dependences of fractal multilayers can
localize light very effectively. Thus they were proposed for different applications,
including very narrow pass and band reject filters. The possibility to produce mul-
tilayers combining fractality and NIM materials (where both of these could induce
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new and interesting phenomena) naturally attracted the attention of researchers.
NIM metamaterial-containing Cantor sets were analyzed in [122] for the lossless
and dispersionless case. Zero-n photonic band gap in Fibonacci stacks containing
NIM were investigated in [121]. In this paper we analyze the influence of multi-
layer filters based on Cantor sets to the thermal radiation distribution and analyse
its applicability to absorptance-emittance tailoring [117, 118]. In our calculations
we utilize Kirchhoff’s law and apply the transfer matrix method, at the same time
taking into account absorption losses and refractive indexdispersion.

8.2 Theory

Several classes of fractal (quasiperiodic or non-periodicdeterministic) structures
distinguish themselves in dependence on the algorithm usedfor the stack construc-
tion. The first class, called the substitutional lattices, is ’generated’ via a repeated
substitution rule. Such structures(Cantor and Fibonacci multilayers and others)
have self-similar optical transmission spectra, and the frequencies of resonance
peaks form a fractal set [16, 15, 134, 135].

The second large class represents multilayers that are fractal by themselves.
They are called multilayer fractal structures because theyare constructed according
to a known fractal generation algorithm. This algorithm hasto be stopped at some
point in order to get a finite structure. Any structure obtained in this way is not a
genuine fractal, but rather a prefractal [18, 137, 17].

Fractal structures were widely studied in conjunction withelectronic properties
of quasi-crystals, superlattices and optical multilayers[123, 16, 15, 134, 135]. We
proceed in applying such formal schemes to obtain spectral features describing the
influence of phase compensation arising from negative refractive index layers.

In this paper we restrict ourselves to the simplest form of the so-called ’triadic’
Cantor multilayer [136],[138]. We define two refractive indices (nA, nB) and ge-
ometrical thickness values (dA, dB) that correspond to two materials (A) and (B).
The Cantor ’triadic’ sequence is defined by the rule

Sn = Sn−1BnSn−1 for n ≥ 2, S0 = A, S1 = ABA (8.1)

whereBn for the n-th layer denotes the block B with a thickness ofdBn = 3n−1dB .
Thus a triadic Cantor set is formed by splitting an interval in material A (let us
denote it as [0, 1]) into 3 pieces. The center piece (from 1/3 to 2/3) is replaced by
material B. Then each of the remaining intervals of A ([0, 1/3] and [2/3, 1]) is split
into three and the process is repeated from the beginning. Theoretically, for a full
fractal set the division should continue infinitely long, but in reality a truncated set
is retained (a pre-fractal set). One of the reasons is that a Cantor structure with
a very large number of layers would have a strongly decreasedtransmissivity and
thus would become useless from the practical point of view [139].

A non-periodic multilayer can be in-bound (with the total thickness of the
structure given at the beginning, while one performs its subdivision to develop

123



Chapter 8. Emittance tailoring by. . . 8.2. Theory

higher generations) or out-bound (single layer thickness is given, one stacks such
strata according to a sequence rule to develop higher generations) [15].

Throughout this paper we used the out-bound form, since it isthe most practical
for NIM-containing structures (NIM itself has to assume a fine structure which is
much larger than the atom scale and thus poses a severe limit to in-bound division).
Moreover, such an approach enables a direct comparison of transmission optical
spectra for different values of N.

We further define that the constitutive layers have an equal optical thickness,
that of a quarter-wavelength slabsnAdA = nBdB = λ0/4. Hence, the phase shifts
in the corresponding layers are given by

δA(B) =
π

2
Ω cos θA(B) (8.2)

whereΛ = λ0/λ = ω0/ω is the normalized frequency andθA,θB are the angles
of propagation for the case of oblique incidence on the multilayer.The structure is
deposited on a thick substrate (d >> λ) with an indexnS. We assume that the
multilayer is surrounded by a semi-infinite mediumn0, which in our case for the
sake of simplicity is air or vacuum.

A quarter-wavelength optical thickness of the multilayer slabs is chosen to en-
able easier comparison with prior work, since the same choice is encountered both
in literature on absorptance and emittance tailoring by photonic crystals, e.g. in
[134, 135] and that on NIM [47, 140]. At the same time, a clear physical picture is
obtained without a loss of generality, since other thickness choices would furnish
qualitatively similar spectral behavior.

Figure 8.1 shows the construction principle of structures analyzed in this chap-
ter (not in exact scale). Those are a one-dimensional multilayer structure composed
of NIM and PIM strata arranged as triadic Cantor sets. Second(G2) and third (G3)
Cantor generations for the in-bound case are shown as examples. No plasmon
modes in the NRM part interacting with the incident electromagnetic wave were
taken into account in this paper. Since the interfaces are assumed to be flat (i.e.
no surface roughness, gratings or similar disturb the plasmon modes), no incident
propagating plane wave can excite surface plasmons regardless of the incidence
angle. The reason is that the plasmon modes must have a largermomentum at the
same frequency for all energies considered [31]. Thereforeno influence of plasmon
modes to the emittance may be expected.

A common practice when studying the spectral properties of optical multilayers
is to use the well established numerical technique of the transfer matrix method
[1, 4], as well as its equivalent counterpart, the recurrence relations for transmission
and reflection coefficients [12]. If we assume transfer matrix through a multilayer
composed of materials A and B in the form of interface matricesMAB (where A,B
denote the corresponding A and B layers) and propagation matricesMp (with p
denoting a layerA(B) or S of a given thickness), then we are able to uniquely
describe the wave propagation through this multilayer by multiplying these two
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Figure 8.1: A multilyer structure composed of NIM and PIM strata arranged as
triadic Cantor sets; a) 2nd generation (G2), b) 3rd generation (G3), c) schematic
presentation of a negative index-positive index material interface

matrices.

MAB = 1/2 [1 + nB/nA 1 − nB/nA; 1 − nB/nA 1 + nB/nA] (8.3)

Mp = [exp(−iδp) 0; 0 exp(+iδp)] (8.4)

In the case of oblique incidence the above matrices retain the same form, but
one has to substitutenA(B) → nA cos(θA(B)) for corresponding refractive in-
dices in the propagation matrices for both TE- and TM-polarization, andnA(B) →
nA(B) cos(θA(B)) for TE-polarization andnA(B) → nA(B)/ cos(θA(B)) for TM-
polarization in the interface matrices. The overall transfer matrix for the chosen
structure is given as a product of the interface and the propagation matrices [1, 4].
The transmission and the reflection coefficient of the given structure follow from
the overall transfer matrix which has the formM = [m11 m12; m21 m22] and are
expressed through the formulas

T =
1

|m11|2
and R = |m21

m11
|2. (8.5)

For our NIM layers we assume a frequency-dependent complex refractive in-
dex. In literature on quasi-periodic optical multilayers acommon practice is to use
frequency independent parameters (e.g. [134, 136]), but a real NIM metamaterial
must be dispersive and lossy in order to preserve causality.We assume that both
effective permittivity and permeability posses the same form

ǫ(ω) = 1 −
ω2

pe

ω(ω + jΓe)
, µ(ω) = 1 −

ω2
pm

ω(ω + jΓm)
(8.6)

whereωpe(m) are the electric (magnetic) artificial plasma frequencies and Γpe(m)

are electric (magnetic) damping constants (which can be expressed as a fraction of
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the plasma frequency [31]. We choseωpe = ωpm = ωp andΓpe = Γpm = Γp, thus
the refractive index of the NIM part reads

n(ω) = 1 −
ω2

p

ω(ω + jΓp)
(8.7)

We represented the damping coefficient as a fraction of plasma frequency, which is
an often met assumption in literature, acceptable even fromthe experimental point
of view [4],[5].

In our calculations we considered the case when phase compensation [18]
occurs. If the wave vector through a generalized PIM-NIM structure isk =
k0ni(wave number in free space isk0 = 2π/λ , andni is refractive index in
material i (i = A,B), then the phase after the end of the second slab isφ =
kAdA + kBdB = k0(nAdA + nBdB). If the first layer is PIM (nA > 0, µA = 1)
and the second is NIM (nB < 0, µB = −1) the total phase difference isφ =
kAdA + kBdB = k0(nAdA − |nB |dB). If the appropriate rationA/|nB | = dB/dA

is chosen, the total phase difference between the front and the back faces of this
two-layer structure becomes exactly zero.

In such a system NIM acts as a phase compensator for both propagating and
evanescent waves. It reduces the decay in amplitude of evanescent waves and acts
as an amplitude compensator.

If absorption losses are taken into account, the condition for the full phase
compensation becomes [107]

φ = k0(nAdA − |nB|dB) + jκBdB (8.8)

andφ = jκBdB (κB = k0Im(nB)) for the zero phase difference (i.e. the total
phase difference in lossy material is never equal to zero).

Stacking alternating layers of PRM and NRM materials leads to a new type
of photonic band gaps with properties very different from those of Bragg gaps,
denoted as the zero-n gap. It arises when the averaged effective refractive index of
the structure equals zero. It has been demonstrated that thezero-n gap is almost
invariant with respect to a (length) scale change, and insensitive to randomness as
long as the condition is satisfied [46]. This zero-n gap structure is in fact a fully
phase-compensated 1D photonic crystal with impedance mismatch, see chapter 5.

In the zero-n structures one can observe the existence of discrete modes and
photon tunnelling modes in the band structure. The discretemodes can be utilized
to make a very narrow filters without side lobes.

All negative-n materials that have been made until now are dispersive, which
is in fact a condition imposed by causality [31, 30]. However, by stacking positive-
n material and negative-n material in a layered structure, it is always possible to
find (within the range of negative refractive index) such frequency that a zero-n
condition will be met for some particular frequency [46].

We consider a system in thermal equilibrium at a given temperature, its ra-
diation having a Planck’s blackbody spectrum. A non-periodic multilayer filter
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containing NRM material modifies the spectral emissivity ofthe blackbody ra-
diator and the angular distribution of the radiation. To calculate the modifica-
tion by the Cantor structures, we determine first the thermalemmittance E of the
multilayer. This is done by an indirect method which makes use of the Kirch-
hoff’s law of detailed balance, (a material’s emittance in thermal equilibrium is
proportional to its absorptance; for a blackbody they are equal). The absorp-
tance/emittance is defined by the reflection and transmission coefficient of the mul-
tilayer asE = A = 1 − R − T , see chapter 5 and references therein.

Once the emittance is obtained, its multiplication by the Planck power spectrum
gives the power spectrum of the PBG emitter in terms of its emittance and the
blackbody spectrum

ρCantor(ω) = ECantorρBB(ω) (8.9)

An expression for the Planck radiation law in NRM media was obtained in [128]
and in [116].

8.3 Results and discussion

We considered PIM-NIM non-periodic Cantor-type structures formed by inserting
NIM layers as a substitution part in the multilayer lattices. For comparison, we also
analyzed purely positive-material structures (PIM-PIM) with the same geometry.
For the most part of this paper we considered lossy and dispersive NIM media.

Figure 8.2 shows as an illustration the results calculated for idealized PIM-
NIM Cantor structures without losses and dispersion fornA = 1.5, nB = −3 and
dA = λ0/4nA, dB = λB/4nB . It can be seen that the transmission spectra exhibit
spectral scalability which is the well-known property of conventional positive index
(PIM-PIM) structures. Further it is seen that spectral sequential splitting leads to
forming of multiple narrow transmission peaks.

One can see that the overall width of the multiplets remains almost unchanged
during splitting. This interesting difference of spectralproperties between the PIM-
PIM and the PIM-NIM non-periodic structures is in fact caused by phase com-
pensation that occurs in the second case. Phase compensation in periodic struc-
tures causes ripple suppression, transmission spectra flattening and rejection band
widening [43]. A similar effect is the cause for distinctivespectral characteristic in
NIM-containing fractal multilayer case. It has been suggested that in the case of
very large values of N, i.e. an extreme geometrical fractality, the spectral behavior
of PIM-NIM structures in general starts to resemble that of the PIM-PIM fractal
multilayers [122].

All other calculations in this paper are done for lossy and dispersive NRM
where dispersion is taken into account according to (8.7). We chosenB(ω) =
1−ω2

p/ω
2+jΓω2

p/ω
3 with ωp = ω0/

√
3 andΓ = 0.001ωp to facilitate calculation

and at the same time enable comparison with our previous results [116] without a
loss of generality.
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Figure 8.2: Transmission for Cantor(3, {1}, N) PRM-NRM multilayer structures:
central part of the spectrum forN = 3 (top) andN = 4, scaled (bottom) for
nA = 1.5, nB = −3 anddA = λ0/4nA, dB = λB/4nB .

Figure 8.3 shows a mean value of the real part of refractive index in the NRM-
PRM Cantor composite for different generations for the dispersive case. We used
the equation [135]

〈Re(n)〉 = (NjAnAdA + NjBnBdB) / (NjAdA + NjBdB) (8.10)

wherej is the generation number,NjA = 2j andNjB = 3j−2j for average refrac-
tive index calculation in Cantor multilayer. The dispersion of negative refractive
index is shown in the inset of Figure 8.3.

In the case of lossy NIM a true phase compensation does not take place, i.e. an
imaginary part of refractive index always exist. However, suppression of the real
part of phase shift significantly influences the interference pattern, and if losses
are small nearly perfect phase compensation appears. As we regard here lossy
and absorptive NRM layers a marked difference can be seen in zero-n band gap
condition compared to the lossless case, i.e. no true zero-nband gap appears. This
consideration is valid for both periodical and quasi-periodic situations.

Figure 8.4 shows spectral transmission and spectral emittance of a lossy and
dispersive structure. The self-similarity of spectrum is mostly removed by disper-
sion and losses. However, although the dependencies in Figure 8.4 are not strictly
self-similar, their patterns reveal a certain degree of fractal-like behavior.

Figure 8.5 shows the spectral absorptance (or emittance) inmultilayer struc-
tures containing both positive and negative index materials. The suppressed region
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Figure 8.3: Mean value of the real part of refractive index for a Cantor-type com-
posite containing negative index part for different generations (from G0 to G6).
The NIM dispersion is shown in the inset.

1.2 1.3 1.4 1.5 1.6
0

0.2

0.4

0.6

0.8

1

ù/ù0

T
ra

n
s
m

is
s
io

n

1.4 1.45 1.5 1.55 1.6
0

0.2

0.4

0.6

0.8

1

ù/ù0

T
ra

n
s
m

is
s
io

n

0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

ù/ù0

E
m

it
ta

n
c
e

0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

ù/ù0

E
m

it
ta

n
c
e

G2 G3

G2 G3

Figure 8.4: Transmission and emittance of a Cantor-type NIM-PIM multilayer for
generations G2 and G3.
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Figure 8.5: Absorptance (or emittance) for periodic versusCantor-type NIM-PIM
multilayers. Structures with similar numbers of separate layers are considered to
facilitate comparison.nA = 1.41, nB = −2, nS = 3 + i0.3.

of thermal radiation in periodic NIM-containing structureis wider, and the spectral
characteristics flatter (there are no sharp ripples typicalfor positive index materi-
als) in comparison to the all-positive case. A comparison isgiven between periodic
NIM-containing multilayers and Cantor-type non-periodicstructures. A full rejec-
tion band appears in spectral absorptance/emittance of periodic structures, whereas
Cantor-type pre-fractals exhibits sharp and narrow resonances throughout the band
already for such low generation numbers.

Figure 8.8 shows the angular and spectral dependence of emittance of Cantor
sets composed of positive refractive index material (PIM-PIM) for generations 0 to
3, and Figure 8 shows the same dependence for the NIM-PIM case. The dependen-
cies were calculated for the TE mode for the dispersionless and lossy case. Similar
dependencies are obtained for the TM mode (not shown here).

For higher generation Cantor structures, in the all-positive (PIM-PIM) case a
considerable attenuation is caused by a high number of layers, thus they become
practically useless for filtering applications [139]. However, due to the effect of
phase compensation, in the case of NIM-PIM structures one can use a much larger
number of layers (higher generations) in Cantor-type filters and still have a sig-
nificant transmission and significant absorptance/emittance tailoring effects. This
is an important difference in comparison to the conventional all-positive Cantor
structures.
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Figure 8.6: Absorptance (or emittance) for four generations of Cantor sets for
structures containing dispersive and lossy negative indexmetamaterial;nA = 1.41,
nS = 3 + i0.3. Cantor multilayers are a) G0; b) G1; c) G2; d) G3. Dispersion
dependence for the metamaterial partnB is shown in inset in Figure 3 (b).

Figure 8.6 shows spectral absorptance for four successive generations (0 to
3) of Cantor sets for multilayers containing dispersive andlossy negative index
metamaterial with a dispersion dependence as shown in the inset. Although the
NIM part is dispersive and lossy, a rich absorptance spectrum is seen already in
fourth generation. Figure 8.7 shows the spectral absorptance for higher generations
(4 to 8), where similar behavior is even more pronounced.

There are several important conclusions to be deduced from the comparison of
Figures 7 and 8. First, the influence of the angle of incidenceis less pronounced in
non-periodic structures containing NIM than in the same structures with all-PIM
layers. This may lead to more relaxed conditions when utilizing negative index
non-periodic multilayers.

Second, angular and spectral flattening and disappearance of ripples do appear
in the NIM-containing structures, but one can still notice arich spectral behavior
which could be useful for practical applications. The flattening is a result of phase
compensation which inevitably occurs under certain conditions in NIM containing
structures, but in the case of Cantor-type structures this does not remove the useful
properties of non-periodic multilayers.

With an increase of the number of layers more peaks usually associated with
non-periodic structures appear in the spectral characteristics and the spectral dia-
grams become more similar to the conventional non-periodicones, but at the same
time the structures remain much less sensitive to incident angle than the all-positive
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Figure 8.7: Absorptance (or emittance) for four higher generations of Cantor sets
for structures containing dispersive and lossy negative index metamaterial;nA =
1.41, nS = 3 + i0.3. Cantor multilayers are a) G4; b) G5; c) G6; d) G7.

ones.
Figure 8.10 and Figure 8.11 show directional spectral emittance from different

generations of Cantor multilayers for frequenciesω/ω0 = 1. Figure 8.10 shows
the all-positive case. It can be seen that the emittance has astrong angular depen-
dence, while the spatial distribution becomes progressively more complex with an
increase of the generation number. Contrary to that, in the NIM-containing Cantor
multilayers (shown in Figure 8.11) for lower generations the angular dependence
is much weaker than in the all-positive case. For higher generations the directivity
of emittance is much more pronounced and it remains at nearlythe same angles in
different generations.

For generations G0 and G1 it can be seen that the angular dependence of emit-
tance follows a very similar pattern both for NRM-containing and all-positive case.
This is consistent with conclusions from [122]. In all polarcurves shown in Fig-
ure 8.10 and Figure 8.11 one can notice the existence of a stopband (the range of
suppressed emittance). In the all-PIM case the band stop quickly disappears with
an increased angle, while in the NIM-containing structure it is less sensitive to the
propagation angle.

If an additional defect is introduced into the Cantor pre-fractal (not shown
here), an adjustment of its parameters allows for an accurate tailoring of angular
directivity of emittance (a ’super-directivity generated’ tailoring) which could find
its practical application. An important conclusion is thatNIM-containing Cantor
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Figure 8.8: Angular and normalized spectral dependence of emittance of Cantor
sets composed of positive refractive index materials (PIM-PIM) for generations 0
to 3. nA = 1.41, nB = 2, nS = 3 + i0.3.

multilayer enable both spectral and angular tailoring of thermal emittance. This is
similar to the periodic case [116].

It is interesting to note another possibility for fractal multilayers designed in
metallo-dielectric quasi-periodic stacks [135]. The use of periodic arrangement of
metallic and dielectric layers generally leads to a decrease of transmittance with
the addition of more layers. However, it is possible to arrange the layers in quasi-
periodic geometry in order to maintain high levels of transparency, even when more
metal is added to the stack [135]. This is important when considering the ’trans-
parent metal’ designs where it is possible to obtain good transparency even in the
spectral regions where the intrinsic behavior of metals demands negligible trans-
mission.
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Figure 8.9: Angular and normalized spectral dependence of emittance of Cantor
sets composed of positive refractive index materials (PIM-NIM) for generations 0
to 3. nA = 1.41, nB = −2, nS = 3 + i0.3.

8.4 Concluding remarks

Our investigations were dedicated to pre-fractal (non-periodic) multilayers of tri-
adic Cantor type containing dispersive and lossy negative refractive index media
applied as filtering structures on the top of thick absorbingsubstrate. We ana-
lyzed substrates emittance/absorptance modification caused by such structures. We
have found that phase compensation in these structures improves their usability for
practical applications compared to the all-PIM case. Also,the dependence of the
spectral transmission on waves propagation angle is much weaker than for con-
ventional quasi-periodic filters. A richer spectrum in a relatively narrow band is
achieved with a smaller number of layers. Spectral fractal-like behavior occurs
for extreme geometrical fractality, but the sequential splitting gives rise to multiple
narrow transmission peaks, which has an applicative potential itself. The use of
NIM Cantor multilayers enables tailoring of both spectral and angular dependence
of the emittance/absorptance (thermal radiation antenna functionality).
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Figure 8.10: Directional spectral emittance for all-positive Cantor multilayers in
TE mode for different generations from G0 to G7 and atω/ω0 = 1. nA = 1.41,
nB = 2, nS = 3 + i0.3.
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Figure 8.11: Directional spectral emittance for negative refractive index material-
containing Cantor multilayers in TE mode for different generations from G0 to G7
and at frequencyω/ω0 = 1. nA = 1.41, nB = −2, nS = 3 + i0.3.
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tization and spontaneous decay in left-handed media.Phys. Rev. A,
68(4):043816, 2003.
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Summary and outlook

Theoretical research in optics may be divided in two distinctive but well connected
general directions. The first deals with developing new or improving existing math-
ematical models to describe relevant physics. The second aims to predict new
phenomena or applications using established models and techniques. This thesis
touches both directions through the study of resonances in optical multilayers.

Optical multilayers are structures periodic in their properties in one direction.
They have been longstanding subject of investigation. Nonetheless, both funda-
mental and applied research in multilayer optics is still important due to the rel-
evance of multilayer structures for optical systems. The introduction of specific
defects in otherwise periodic configurations enables effective tailoring of the op-
tical transmission properties. Equally important, novel materials give additional
degrees of freedom for the implementation of desired functionalities as well as the
exploration of new physical phenomena. Besides, knowledgegained from an in-
vestigation of multilayer structures may serve as a basis for the interpretation and
the qualitative understanding of higher dimensional optical structures.

We consider the open and finite nature of a specific class of multilayer struc-
tures by directly characterizing their resonance properties via an investigation of
the quasi-normal mode spectrum. Quasi-normal modes are eigenfunctions that ap-
pear as solutions of the eigenvalue problem for open structures. They are field
profiles representing damped oscillations of the open optical system after an initial
excitation is withdrawn.

Specifically, we are interested in the field representation and in perturbation
techniques for defect resonances of defect based one-dimensional photonic crys-
tal. First, a recently developed QNM expansion method applied for the solution of
the scattering problem is briefly reviewed to model examplesof the optical defect
microcavities in periodic multilayers. Second, we proposea novel and construc-
tive way of connecting a quasi-normal mode description to transmission resonance
properties of optical defect microcavities in 1D multilayer structures.

Our approach is meant specifically for approximations of thedefect induced
transmission modes existing in the bandgap of otherwise periodical structures. It
relies on a variational principle for the field representation of the field profiles in
the transmission problem. A field template with a mirror fieldand the most rele-
vant QNMs enables very accurate field and spectral transmission approximations
that agree excellently with the TMM reference. Moreover, method allows to exam-
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ine directly the resonance nature of the transmission response in cases where it is
very hard to establish this from exact solutions of the transmission problem, such
as provided by the TMM method. The approach quantifies directly the physical
viewpoint, where the defect cavities are regarded as externally forced oscillators.

Furthermore, a variational principle for QNMs allows to approximate the eigen-
frequencies and QNMs of composite multiple cavity structures by eigenfrequencies
and QNMs of simpler structures. Hence, a form of coupled modetheory for finite,
open 1-D PC structures is proposed, that uses directly the most relevant QNMs.
Closely related, an expression for a first order perturbation correction of the com-
plex eigenfrequencies is derived by means of variational restriction.

We analyzed a series of characteristic examples of multiplecavity structures
and were able to point out characteristic features in the composite structures as
originating from simpler structures. The results suggest that the notion of the pho-
tonic crystal molecules can be founded on the analysis of QNMspectra rigged
with the variational approximation method. Therefore, theQNM analysis offers a
resourceful method for the interpretation of complex phenomena associated with
the resonance properties in 1-D PC structures. Numerical examples suggest that
the method is valid for single and multiple cavity structures in both symmetric and
nonsymmetric layer arrangements and both weak and strong couplings between
defects.

Further research might explore the application of QNMs analysis on the pho-
tonic crystal heterostructures, composed from different types of complex unit cells
with different periods. The investigation of the photonic crystal molecule con-
cept should include photonic crystal atoms as truncated non-periodic superlattices.
Furthermore, provided that suitable QNM basis fields can be made available by
analytical or numerical means, generalizations to two or three spatial dimensions
could be based on the functional representations of the frequency domain Maxwell
equations. Alternative formulations of the QNM problem using the (first order)
Maxwell equations directly rather than the (second order) Helmholtz equation are
an interesting possibility.

A second class of problems that we address concerns multilayer structures in-
corporating negative index metamaterials, which are artificial composites with sub-
wavelength features and negative real part of the refractive index of the homoge-
nized structure. We use the Transfer Matrix Method, as outlined in chapter 1, as
mathematical method for numerical computations and analysis.

Novel properties of the bandgap structure and transmissionspectra can be ob-
tained by the introduction of NIMs in the construction of themultilayers. Key
mechanism responsible for novel properties is the phase compensation, the par-
tial or full removal of the phase shift of the wave propagating through a NIM-
containing multilayer.

First we analyzed transmission spectra for aperiodic Thue-Morse multilayers
composed from alternating layers with positive and negative refractive indices.
In contrast to other non-periodic NIM-containing multilayers where self-similar
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and scalable spectra occurred for higher generations, for Thue-Morse multilayers
these spectral properties do not appear, even in the dispersionless and lossless case.
However, Thue-Morse multilayers exhibit transmission resonances located at the
midgap frequency of the periodic multi-layer. The field distribution at the reso-
nance frequency suggests a common origin in both all-PIM andNIM-containing
multilayers connected with the special order of layers. We demonstrated by direct
computation that the strong material dispersion in the NIM materials may effec-
tively diminish the influence of the aperiodic order and the phase compensation
over a large frequency range. Only the prospect of weak material dispersion in the
NIM leads to a potential for the application of the optical phenomena associated
with aperiodic order.

We apply passive NIM-containing multilayers to tailor the spectral and angular
emittance/absorptance distributions of a thick absorbingsubstrate. On the basis
of the transfer matrix method and of the Kirchhoffs law for thermal radiation, we
analyze realistic finite structures that comprise NIM-containing multilayers. Dis-
persion and losses in the NIM part are taken into account. First, we analyze finite
periodic multilayers. Our results show that structures containing NIM show large
influence to the thermal radiation spectrum. The suppressedregion of thermal ra-
diation is wider than in usual all-PIM structures, and the spectral characteristics
more flat, i.e. without sharp oscillations typical for the all-dielectric case. It can
be also seen that the thermal radiation absorbtance/emittance is less dependent on
the angle of the incident radiation. Second, our investigations were dedicated to
pre-fractal multilayers of triadic Cantor type containingdispersive and lossy neg-
ative index media. As for other NIM- containing multilayersthe dependence of
the spectral transmission on the spatial angle is much weaker than for conventional
non-periodic multilayers, while the sequential splittinggives rise to multiple nar-
row transmission peaks, which has an applicative potentialitself.

The theoretical results suggest that a NIM-containing multilayer on top of an
absorbing substrate implements the concept of thermal radiation antenna, i.e. a
system that enables both spectral and directional selectivity of the thermal power
spectrum emitted by some material object.

Some special features not achievable by conventional all-positive index struc-
tures may arise when the filtering structure containing bothNIM and PIM strata
is designed to operate within the zero-n bandgap regime. Although, the zero-n
bandgap regime requires additional analysis, in this mode of operation it might be
possible to render rejection bands which are wide both in thespectral and the angu-
lar domain, or, alternatively, ultra-narrow pass-bands with angular superselectivity.
With the prospect of the NIMs operating for optical frequencies and with control-
lable intrinsic dispersion and absorption properties, NIM-containing structures can
be seen as a promising design choice for thermal radiation antennas.
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Samenvatting

Theoretisch onderzoek in de optica kan in twee verschillende maar duidelijk gere-
lateerde hoofdrichtingen worden opgedeeld. De eerste houdt zich bezig met het
ontwikkelen van nieuwe of het verbeteren van bestaande wiskundige modellen om
relevante natuurkunde te beschrijven. De tweede richt zichop het voorspellen van
nieuwe fenomenen of toepassingen, gebruik makend van bestaande modellen en
technieken. Dit proefschrift raakt aan beide richtingen door de studie van reso-
nanties in optische multilagen.

Optische multilagen zijn strukturen die periodiek zijn in hun eigenschappen in
een richting. Ze zijn al sinds lange tijd onderwerp van onderzoek. Echter, zowel
fundamenteel als toegepast onderzoek naar optica in multilagen is nog altijd van
belang vanwege de relevantie van multilaagsstrukturen voor optische systemen.
De introductie van specifieke defecten in verder periodiekestrukturen maakt het
mogelijk de optische transmissie-eigenschappen op effectieve wijze aan te passen.
Net zo belangrijk is het feit dat nieuwe materialen extra vrijheidsgraden geven
voor zowel het implementeren van gewenste functionaliteiten als het verkennen van
nieuwe natuurkundige fenomenen. Bovendien kan de kennis die wordt gegenereerd
bij het onderzoek naar multilaagsstrukturen als basis dienen voor het interpreteren
en kwalitatief begrijpen van hoger-dimensionale optischestrukturen.

Wij beschouwen het open en eindige karakter van een specifieke klasse van
multilaagsstrukturen door hun resonantie-eigenschappendirekt te karakteriseren
via het onderzoek naar hun ’quasi-normal mode’ (QNM) spectrum. Quasi-normal
modes zijn eigenfuncties die verschijnen als oplossingen van het eigenwaardeprob-
leem voor open strukturen. Dit zijn veldprofielen die de gedempte oscillaties verte-
genwoordigen van het open optische systeem nadat een aanvankelijke excitatie is
weggenomen.

In het bijzonder zijn we geinteresseerd in de veldrepresentatie van en in verstor-
ingstechnieken voor defect-resonanties van een-dimensionale fotonische kristallen
gebaseerd op defecten. Als eerste wordt een recent ontwikkelde QNM expansie
methode, toegepast op het oplossen van het verstrooiingsprobleem, kort bekeken
om voorbeelden van optische defect-microtrilholtes in 1-Dmultilaagsstrukturen de
modelleren. Ten tweede stellen we een nieuwe en constructieve manier op om
een verbinding aan te brengen tussen een quasi-normal mode beschrijving en de
transmissie resonantie eigenschappen van optische defect-microtrilholtes in 1-D
multilaagsstrukturen.
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Onze aanpak is in het bijzonder bedoeld voor benaderingen van transmissie
modes die door een defect geinduceerd worden, gelegen in de bandgap van verder
periodieke strukturen. Zij is gestoeld op een variationeelprincipe voor de veldrep-
resentatie van de veldprofielen in het transmissieprobleem. Een veldsjabloon met
een spiegelveld en de meest relevante QNM’s maakt zeer nauwkeurige veld- en
spectrale transmissiebenaderingen mogelijk, die uitstekend overeenkomen met de
TMM referentie. Behalve dit maakt de methode het mogelijk het resonantiekarak-
ter van de transmissierespons direct te inspecteren, in gevallen waarin het erg
moeilijk is om deze informatie te extraheren uit exacte oplossingen van het trans-
missieprobleem, zoals verkregen uit de TMM methode. De aanpak quantificeert
direct het natuurkundige oogpunt, waarin de defect-trilholtes als extern gedreven
oscillatoren worden gezien.

Verder staat een variationeel principe voor QNM’s het toe omde eigenfrequen-
ties en QNM’s van samengestelde strukturen van meerdere trilholtes te karakteris-
eren met behulp van de eigenfrequenties en QNM’s van eenvoudiger strukturen.
Dus wordt een vorm van een gekoppelde-mode theorie voor eindige, open 1D PC
strukturen voorgesteld, die de meest relevante QNM’s direct gebruikt. Dicht hi-
eraan gerelateerd wordt een uitdrukking voor een eerste orde verstoringscorrectie
van de complexe eigenfrequenties afgeleid door middel van variationele restrictie.

We hebben een aantal karakteristieke voorbeelden van meerdere-trilholte struk-
turen geanalyseerd en waren in staat aan te tonen dat karakteristieke kenmerken in
de samengestelde strukturen aan eenvoudiger strukturen ontspringen. Dit resultaat
suggereert dat het idee van fotonisch kristal moleculen gebaseerd kan worden op de
analyse van QNM spectra, opgetuigd met de variationele benaderingsmethode. De
QNM analyse levert dus een vernuftige methode voor de interpretatie van de com-
plexe fenomenen geassocieerd met de resonantie-eigenschappen in 1-D PC struk-
turen. Numerieke voorbeelden suggereren dat de methode geschikt is voor enkele
en meerdere trilholte strukturen in zowel symmetrische alsniet-symmetrische or-
dening van lagen en voor zowel zwakke als sterke koppeling tussen defecten.

Verder onderzoek zou de toepassing kunnen verkennen van de analyse van
QNMs op fotonisch kristal heretostrukturen, gevormd uit verschillende types com-
plexe eenheidscellen met verschillende periodes. Het beschouwen van het fotonis-
che kristal molekuul concept zou fotonisch kristal atomen als afgekapte niet- pe-
riodieke superroosters moeten bevatten. Bovendien, aangenomen dat geschikte
QNM basisvelden beschikbaar kunnen worden gemaakt op analytische of numerieke
manier, zouden generalisaties naar twee of drie ruimtelijke dimensies kunnen wor-
den gebaseerd op de functionaalrepresentaties van de Maxwellvergelijkingen in het
frequentiedomein. Alternatieve formuleringen van het QNMprobleem direct ge-
bruik makend van de (eerste orde) Maxwellvergelijkingen inplaats van de (tweede
orde) Helmholtz vergelijking zijn een interessante mogelijkheid.

Een tweede klasse problemen waar we ons op richten houdt zichbezig met
multilaagsstrukturen waarin negatieve-index metamaterialen zijn opgenomen, wat
kunstmatig samengestelde materialen zijn met componentenkleiner dan de golflengte,
waarbij het reele deel van de brekingsindex van de gehomogeniseerde struktuur
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negatief is. We gebruiken de Transfer Matrix Method (TMM), zoals omschreven
in Hoofdstuk 1, als wiskundige methode voor de numerieke berekeningen en anal-
yse.

Nieuwe eigenschappen van de bandgap struktuur en transmissiespectra kun-
nen verkregen worden door introductie van Negatieve Index Materialen (NIM’s) in
de constructie van de multilagen. Het sleutelmechanisme dat verantwoordelijk is
voor de nieuwe eigenschappen is fase compensatie, de gedeeltelijke of volledige
verwijdering van de fase-verandering van de golf die door een multilaag met NIM
propageert.

Eerst hebben we transmissiespectra geanalyseerd van aperiodieke Thue-Morse
multilagen gevormd van lagen met om en om positieve en negatieve brekingsindices.
In tegenstelling tot andere niet-periodieke multilaagsstrukturen met NIM waarin
zelf-gelijkvormige en schaalbare spectra optraden voor hogere generaties, verschi-
jnen deze spectrale eigenschappen niet voor Thue-Morse multilagen, zelfs in het
dispersie- en verliesvrije geval. Echter, Thue-Morse multilagen vertonen trans-
missieresonanties gelegen op de mid-gap frequentie van de periodieke multilaag.
De veldverdeling op de resonantiefrequentie suggereert een gelijke oorsprong in
zowel volledig PIM multilagen alsook multilagen met NIM, verbonden met de spe-
ciale ordening van de lagen. We hebben door directe berekening laten zien dat de
sterke materiaaldispersie in de NIM’s de invloed van zowel de aperiodieke orden-
ing als de fasecompensatie over een groot frequentiegebiedeffectief vermindert.
Enkel de verwachting van lage materiaaldispersie in het NIMleidt tot een poten-
tieel voor de toepassing van de optische fenomenen geassiocieerd met aperiodieke
orde.

We passen passieve multilagen met NIM’s toe op het aanpassenvan de spec-
trale en radiele emittantie / absorptie distributies van een dik absorberend substraat.
Op basis van de TMM en van Kirchhoff’s wet van warmtestraling, analyseren we
realistische eindige strukturen die NIM-bevattende multilagen bevatten. Dispersie
en verlies in het NIM deel wordt meegenomen. Ten eerste analyseren we eindige
periodieke multilagen. Onze resultaten laten zien dat strukturen met NIM een grote
invloed op het warmtestralingsspectum laten zien. Het onderdrukte gebied van
warmtestraling is groter dan in gebruikelijke volledig-PIM strukturen, en de spec-
trale karakteristiek is vlakker, dus zonder de scherpe oscillaties die typisch zijn
voor het puur dielectrische geval. Het is eveneens te zien dat de absorptie / emit-
tantie van de warmtestraling minder afhankelijk is van de hoek van inval van de
straling. Ten tweede waren onze onderzoeken gericht op pre-fractal multilagen van
triadisch Cantor type, met dispersieve en niet-verliesvrije negatieve-brekingsindex
media. Net als in andere multilagen met NIM is de invloed van de ruimtelijke
hoek op de spectrale transmissie veel zwakker dan in conventionele niet-periodieke
multilagen, terwijl de opeenvolgende splitsing aanleiding geeft tot meerdere smalle
transmissiepieken, wat op zich al mogelijke toepassingen heeft.

De theoretische resultaten suggereren dat een multilaag met NIM bovenop een
absorberend substraat het concept van een warmtestralingsantenne implementeert,
dus een systeem is dat zowel spectrale als directionele selectiviteit mogelijk maakt
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van het warmtestralingsspectrum dat uitgezonden wordt door een object.
Enkele bijzondere kenmerken die niet haalbaar zijn met conventionele puur

positieve-index strukturen kunnen ontstaan wanneer de filterstruktuur die zowel
NIM and PIM lagen bevat is ontworpen om binnen het nul-n bandgap regime te
functioneren. Hoewel er extra onderzoek nodig is in het nul-n bandgap regime,
zou het mogelijk kunnen zijn om in dit werkingstype afwijzingsbanden te gener-
eren die zowel in het spectrale als in het ruimtehoekdomein breed zijn of, daar-
entegen, ultra-smalle transmissiebanden met super ruimtehoekselectiviteit. Met de
verwachting van NIM’s die werken op optische frequenties enmet selecteerbare
intrinsieke dispersie- en absorptieeigenschappen, kunnen strukturen met NIM’s
worden beschouwd als een veelbelovende ontwerpkeuze voor warmtestralingsan-
tennes.
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